Abstract:
Based on Weibull random distribution and damage mechanics theory, starting from the characteristics of rock deformation process, the Drucker-Prager criterion was used to establish a damage constitutive model that can reflect the characteristics of rock various deformation stages. Through the conventional triaxial compression test of frozen-thawed sandstone, the Mohr stress circle was used to obtain the cohesion and internal friction angle of the sandstone under different freeze-thaw cycles. The model theoretical curve and the test curve of freeze-thaw sandstone were compared to verify the model rationality. By varying the internal friction angle, whether the friction angle has an effect on the model was analyzed. The results showed that the theoretical curve obtained by the Drucker-Prager criterion agreed well with the experimental curve, which verified the rationality of the model. The internal friction angle had big influence on the distribution variable and was linear, but had no effect on the damage constitutive model or had little effect. The research results have a good reference value for the establishment of rock constitutive relations.