构造煤纳米级孔隙特征及其对含气性的影响

高彬, 黄华州, 宁娜, 刘明杰, 张宇, 王紫襄

高彬, 黄华州, 宁娜, 刘明杰, 张宇, 王紫襄. 构造煤纳米级孔隙特征及其对含气性的影响[J]. 煤田地质与勘探, 2018, 46(5): 182-187,192. DOI: 10.3969/j.issn.1001-1986.2018.05.028
引用本文: 高彬, 黄华州, 宁娜, 刘明杰, 张宇, 王紫襄. 构造煤纳米级孔隙特征及其对含气性的影响[J]. 煤田地质与勘探, 2018, 46(5): 182-187,192. DOI: 10.3969/j.issn.1001-1986.2018.05.028
GAO Bin, HUANG Huazhou, NING Na, LIU Mingjie, ZHANG Yu, WANG Zixiang. Pore size characteristics of tectonic coal and its influence on gas bearing properties[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 182-187,192. DOI: 10.3969/j.issn.1001-1986.2018.05.028
Citation: GAO Bin, HUANG Huazhou, NING Na, LIU Mingjie, ZHANG Yu, WANG Zixiang. Pore size characteristics of tectonic coal and its influence on gas bearing properties[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 182-187,192. DOI: 10.3969/j.issn.1001-1986.2018.05.028

 

构造煤纳米级孔隙特征及其对含气性的影响

基金项目: 

国家重大科研仪器研制专项(41727801)

详细信息
    作者简介:

    高彬,1995年生,男,山东济宁人,硕士研究生,从事煤与煤层气开发地质及工程的相关科研工作.E-mail:1912593756@qq.com

  • 中图分类号: P618.11

Pore size characteristics of tectonic coal and its influence on gas bearing properties

Funds: 

National Key R&D Project for Scientific Instruments(41727801)

  • 摘要: 煤孔隙对储层含气性具有重要影响,构造煤储层尤甚。采集淮南煤田潘一矿13号煤层中4种煤体结构的煤样进行低温液氮实验,运用最小二乘法原理并采用FHH分形模型,系统地分析了煤储层纳米级(1.7~20nm)孔隙结构特征及其与分形维数之间的关系。结果表明:煤体破坏程度增强致使BJH孔容和BET比表面积增大,过渡孔与微孔含量增加;构造煤中毛细凝聚开始发生在2~3 nm并随着相对压力的增大而逐渐增强;对气体吸附做主要贡献的是孔径为5nm的孔隙,糜棱煤中此类孔隙最多致使含气性最好;研究区内除原生结构煤外,其他煤储层纳米级孔隙分形维数均大于2.6,平均孔径与分形维数呈明显负相关且相关性系数在0.9以上,表明此类孔隙具有明显的分形特征,孔隙结构复杂程度较高。综合孔隙特征表明:构造煤中孔隙结构越复杂且5nm附近吸附孔隙含量越高,含气性越强。
    Abstract: The coal pores have an important effect on the gas bearing property of the reservoir, especially in the tectonic coal reservoir. The low temperature liquid nitrogen experiments were carried out in the coal samples with 4 kinds of coal structure, the coal samples were collected from the No. 13 coal seam of Panyi coal mine, Huainan coalfield. The characteristics of pore structure of coal reservoir at the nanoscale (1.7-20 nm) and its relationship with fractal dimension were systematically analyzed based on the least square method principle and the FHH fractal model. The results show that the increase of coal destruction increases the BJH pore volume and BET surface area, and the content of transitional pores and the micropore in mylonite. The capillary condensation in tectonic coal began to occur at 2-3 nm, gradually increased with the increase of relative pressure. The pores with size of 5 nm are the main contribution to gas adsorption, the better development of which leads to the best gas content of mylonitized coal. Besides the primary tectonic coal, the fractal dimension of nanoscale pores of the other coal reservoir in the study area is more than 2.6, and the average pore size is negatively correlated with the fractal dimension and the coefficient of correlation is above 0.9, which shows that the pore has obvious fractal characteristics and the complexity of pore structure is high. The comprehensive pore characteristics indicate that the more complex pore structure in tectonic coal and the higher the adsorption pore content with near 5 nm, the stronger the gas content.
  • [1] 傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2007.
    [2] 孟召平,田永东,李国富. 煤层气开发地质学理论与方法[M]. 北京:科学出版社,2010.
    [3] 姚艳斌,刘大锰. 煤储层孔隙系统发育特征与煤层气可采性研究[J]. 煤炭科学技术,2006,34(3):64-68.

    YAO Yanbin,LIU Dameng. Developing features of fissure system in Henan coal reserves seams and research on mining of coal bed methane[J]. Coal Science and Technology,2006,34(3):64-68.

    [4] 琚宜文,姜波,侯泉林,等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报,2005,79(2):269-285.

    JU Yiwen,JIANG Bo,HOU Quanlin,et al. Evolution characteristics and mechanism of nanoscale pore structure of structural coal in southern north China[J]. Acta Geologica Sinica, 2005,79(2):269-285.

    [5] 范俊佳,琚宜文,侯泉林,等. 不同变质变形煤储层孔隙特征与煤层气可采性[J]. 地学前缘,2010,17(5):325-335.

    FAN Junjia,JU Yiwen,HOU Quanlin,et al. Pore structure characteristics of different metamorphic-deformed coal reservoirs and its restriction on recovery of coalbed methane[J]. Earth Science Frontiers,2010,17(5):325-335.

    [6] 黄华州. 远距离被保护层卸压煤层气地面井开发地质理论及其应用研究——以淮南矿区为例[D]. 徐州:中国矿业大学, 2010.
    [7] 朱兴珊,徐凤银,肖文江,等. 破坏煤分类及宏观和微观特征[J]. 焦作矿业学院学报,1995,14(1):38-44.

    ZHU Xingshan,XU Fengyin,XIAO Wenjiang,et al. Classification and macroscopic and microscopic characteristics of destroyed coal[J]. Journal of Jiaozuo Institute of Mining. 1995, 14(1):38-44.

    [8] 孟召平,刘珊珊,王保玉,等. 不同煤体结构煤的吸附性能及其孔隙结构特征[J]. 煤炭学报,2015,40(8):1865-1870.

    MENG Zhaoping,LIU Shanshan,WANG Baoyu,et al. Adsorption capacity and its pore structure of coals with different coal body structure[J]. Jounal of China Coal Society,2015, 40(8):1865-1870.

    [9] 姜玮,吴财芳,赵凯,等. 多煤层区煤储层孔隙特征及煤层气可采性研究[J]. 煤炭科学技术,2015,43(8):135-139.

    JIANG Wei,WU Caifang,ZHAO Kai,et al. Study on pore characteristics of coal reservoir and CBM recoverability in multiple coal seam blocks[J]. Coal Science and Technology,2015, 43(8):138-139.

    [10] 刘爱华,傅雪海,梁文庆,等. 不同煤阶煤孔隙分布特征及其对煤层气开发的影响[J]. 煤炭科学技术,2013,41(4):104-108.

    LIU Aihua,FU Xuehai,LIANG Wenqing,et al. Pore distribution features of different rank coal and influences to coalbed methane development[J]. Coal Science and Technology,2013,41(4):104-108.

    [11]

    EVERRTT D H. Manual of symbols and terminology for physicochemical quantities and units:Appendix Ⅱ:Definitions terminology and symbols in colloid and surface chemistry:Part Ⅱ[J]. Pure and Applied Chemistry,1972,31(4):577-638.

    [12] 张晓辉,要惠芳,李伟,等. 韩城矿区构造煤纳米级孔隙结构的分形特征[J]. 煤田地质与勘探,2014,42(5):4-8.

    ZHANG Xiaohui,YAO Huifang,LI Wei,et al. Fractal characteristics of nano-pore structure in tectonically deformed coals in Hancheng mining area[J]. Coal Geology & Exploration,2014, 42(5):4-8.

    [13]

    YAO Yanbin,LIU Dameng,TANG Dazhen,et al. Fractal characterization of adsorption-pores of coals from north China:An investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology,2008,73(1):27-42.

    [14]

    PFEIFERPER P,AVNIR D. Chemistry in nonintegral dimensions between two and three[J]. the Journal of Chemical Physics, 1983,79(7):3369-3558.

    [15]

    PFEIFER P,WU Y J,COLE M W,et al. Multilayer adsorption on a fractally rought surface[J]. Physical Review Letters,1989, 62(17):1997-2000.

    [16]

    PFEIFER P,COLE M W,KRIM J P. Pfeifer,Cole and Krim reply[J]. Physical Review Letter,1990,65(5):663.

    [17]

    ISMAIL I M K,PFEIFER P. Fractal analysis and surface roughness of nonporous carbon fibers and carbon blacks[J]. Langmuir,1994,10(5):1532-1538.

    [18] 严继民,张培元. 吸附与凝聚[M]. 北京:科学出版社, 1979.
    [19] 陈萍,唐修义. 低温氮吸附法与煤中微孔隙的研究[J]. 煤炭学报,2001,26(5):552-556.

    CHEN Ping,TANG Xiuyi. Study on low temperature nitrogen adsorption and micro pore in coal[J]. Jounal of China Coal Society,2001,26(5):552-556.

    [20] 降文萍,宋孝忠,钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报,2011, 36(4):609-614.

    JIANG Wenping,SONG Xiaozhong,ZHONG Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J]. Jounal of China Coal Society,2011,36(4)609-614.

计量
  • 文章访问数:  55
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-15
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回