延川南地区深部煤层气U型水平井压裂参数优化设计

原俊红, 曹丽文, 付玉通

原俊红, 曹丽文, 付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计[J]. 煤田地质与勘探, 2018, 46(5): 175-181. DOI: 10.3969/j.issn.1001-1986.2018.05.027
引用本文: 原俊红, 曹丽文, 付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计[J]. 煤田地质与勘探, 2018, 46(5): 175-181. DOI: 10.3969/j.issn.1001-1986.2018.05.027
YUAN Junhong, CAO Liwen, FU Yutong. Optimal design of the parameters of U-shaped horizontal well for deep coalbed methane in southern Yanchuan[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 175-181. DOI: 10.3969/j.issn.1001-1986.2018.05.027
Citation: YUAN Junhong, CAO Liwen, FU Yutong. Optimal design of the parameters of U-shaped horizontal well for deep coalbed methane in southern Yanchuan[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 175-181. DOI: 10.3969/j.issn.1001-1986.2018.05.027

 

延川南地区深部煤层气U型水平井压裂参数优化设计

详细信息
    作者简介:

    原俊红,1981年生,男,山西清徐人,博士研究生,从事工程地质方面的研究工作.Email:yuanjunhong@cumt.edu.cn

  • 中图分类号: TE37

Optimal design of the parameters of U-shaped horizontal well for deep coalbed methane in southern Yanchuan

  • 摘要: 鄂尔多斯盆地东缘煤层气田具有高储低渗的特点,为提高深部煤层气单井产量,基于区域构造特征、煤层厚度、含气量及水文地质特征,从优化U型水平井压裂参数的角度,对水平井及其压裂参数进行设计。通过数值模拟对影响水平井产量的水平段长度、压裂缝等主要因素进行研究。结果表明:不考虑摩阻情况下,煤层气产量随水平段长度增加而增加,当水平段超过800m后,由于阻力作用,水平段长度每增加100m,产气量降低10%;压裂缝条数和半缝长对产气量影响较大,最佳的压裂缝条数为4~5条,最佳半缝长为80~120m;裂缝间距和裂缝渗透率对煤层气产量影响不大。依据数值模拟的最优参数对该区煤层气井S1进行压裂,在相同条件下,煤层气产量比未压裂的S2井提高了10倍以上。
    Abstract: The coalbed methane field in the east edge of Ordos basin has the characteristics of "high storage and low permeability". In order to improve the production of deep coalbed methane of single well, the U-shaped horizontal well and its fracturing mode were designed based on the regional structural features, coalbed burial depth, gas content and hydrogeological characteristics. Through numerical simulation, the main factors that affect the output of horizontal well(such as the length of horizontal section and the fractured cracks)were studied. The results show that with the increase of horizontal section length, the output of coalbed methane increases gradually, when the horizontal section exceeds 800 m, the gas production will be reduced by about 10% per every 100 m. The number of fractured cracks and the half length of fractured cracks have great influence on gas production. The optimal number of fractured cracks is 4-5, and the optimum half length is 80-120 m. Fracture spacing and fracture conductivity have little effect on coalbed methane production. Field fracturing test proves that according to the optimal parameters of numerical simulation, CBM well S1 in this area is fractured. Under the same conditions, CBM production is more than 10 times higher than that of well S2 without fracturing.
  • [1] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016, 37(1):125-136.

    QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1):125-136.

    [2] 付玉通,马健强,李永臣,等. 延川南区块深层煤层气井产能主控因素[J]. 煤田地质与勘探,2017,45(5):48-53.

    FU Yutong, MA Jianqiang, LI Yongchen, et al. Research on key factors of CBM well productivity in deep strata in block of south Yanchuan[J]. Coal Geology & Exploration, 2017, 45(5):48-53.

    [3] 刘大锰,李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术,2014,42(6):19-24.

    LIU Dameng, LI Junqian. Main geological controls on distribution and occurence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology, 2014, 42(6):19-24.

    [4]

    WANG Bo,SUN Fenjin,TANG Dazhen,et al. Hydrological control rule on coalbed methane enrichment and high yield in FZ block of Qinshui basin[J]. Fuel,2015,140:568-577.

    [5] 钟玲文. 煤的吸附性能及影响因素[J]. 地球科学-中国地质大学学报,2004,29(3):327-332.

    ZHONG Lingwen. Adsorptive capacity of coals and its affecting factors[J]. Earth Science-Journal of China University of Geosciences, 2004, 29(3):327-332.

    [6] 宋岩,柳少波,琚宜文,等. 含气量和渗透率耦合作用对高丰度煤层气富集区的控制[J]. 石油学报,2013,34(3):417-426.

    SONG Yan, LIU Shaobo, JU Yiwen, et a1. Coupling between gas content and permeability controlling enrichment zones of high abundance coalbed methane[J]. Acta Petrolei Sinica, 2013, 34(3):417-426.

    [7] 宋岩,柳少波,赵孟军,等. 煤层气与常规天然气成藏机理的差异性[J]. 天然气工业,2011,31(12):47-53.

    SONG Yan, LIU Shaobo, ZHAO Mengjun, et al. Difference of gas pooling mechanism between coalbed methane gas and conventional natural gas[J]. Natural Gas Industry, 2011, 31(12):47-53.

    [8] 孙斌,王宪花,陈彩虹,等. 鄂尔多斯盆地大宁-吉县地区煤层气分布特征[J]. 天然气工业,2004,24(5):17-20.

    SUN Bin, WANG Xianhua, CHEN Caihong, et al. Distribution characteristics of the coalbed methane at Daning-Jixian region in Ordos basin[J]. Natural Gas Industry, 2004, 24(5):17-20.

    [9] 伊伟,熊先钺,卓莹,等. 韩城矿区煤储层特征及煤层气资源潜力[J]. 中国石油勘探,2017,22(6):78-86.

    YI Wei, XIONG Xianyue, ZHUO Ying, et al. Coal reservoirs and CBM potentials in Hancheng mining area[J]. China Petroleum Exploration, 2017, 22(6):78-86.

    [10] 陈刚,秦勇,李五忠,等. 鄂尔多斯盆地东部深层煤层气成藏地质条件分析[J]. 高校地质学报,2012,18(3):465-473.

    CHEN Gang, QIN Yong, LI Wuzhong, et al. Analysis of geological conditions of deep coalbed methane reservoiring in the eastern Ordos basin[J]. Geological Journal of China Universities, 2012, 18(3):465-473.

    [11] 郭伟. 延川南煤层气田基本特征与成藏关键因素[J]. 石油实验地质,2015,37(3):341-346.

    GUO Wei. Basic characteristics and key factors of gas accumulation in Yanchuannan coalbed gas field[J]. Petroleum Geology & Experiment, 2016, 37(3):341-346.

    [12] 李清. 延川南煤层气藏水文地质特征与产能关系[J]. 大庆石油地质与开发,2014,33(2):170-174.

    LI Qing. Relationship between the hydrogeological characteristics and productivity for the CBM reservoirs in south Yanchuan[J]. Petroleum Geology and Oil Filed Development in Daqing, 2014, 33(2):170-174.

    [13] 李梦溪,张聪,张绍雄,等. 沁水盆地樊庄区块煤层气直井排采特点[J]. 中国煤层气,2012,9(3):3-7.

    LI Mengxi, ZHANG Cong, ZHANG Shaoxiong, et al. Characteristics of production of CBM vertical well in Fanzhuang block, Qinshui basin[J]. China Coalbed Methane, 2012, 9(3):3-7.

    [14] 王兴隆,赵益忠,吴桐. 沁南高煤阶煤层气井排采机理与生产特征[J]. 煤田地质与勘探,2009,37(5):19-22.

    WANG Xinglong, ZHAO Yizhong, WU Tong. Analysis of typical production mechanism and characteristics of coalbed methane wells for high rank coal in south Qinshui basin[J]. Coal Geology & Exploration, 2009, 37(5):19-22.

    [15] 房茂军,柳迎红,杨凯雷,等. 沁南盆地煤层气U型水平井部署优化研究[J]. 洁净煤技术,2014,20(3):103-105.

    FANG Maojun,LIU Yinghong,YANG Kailei,et al. Optimization of U-shaped CBM horizontal well in Qinnan basin[J]. Clean Coal Technology, 2014, 20(3):103-105.

    [16] 张洪,何爱国,杨风斌,等. "U"型井开发煤层气适应性研究[J]. 中外能源,2011,16(12):33-36.

    ZHANG Hong, HE Aiguo, YANG Fengbin, et al. Study on the adaptability of the U-shape wells on developing the coalbed methane[J]. Sina-Global Energy, 2011, 6(12):33-36.

    [17] 黄巍,王军,郝世俊,等. 煤层气开发U型井施工技术及增产措施试验研究——以寺河煤矿15号煤2014ZX-U-05V/H井组为例[J]. 煤田地质与勘探,2015,43(6):133-136.

    HUANG Wei, WANG Jun, HAO Shijun, et al. Construction technologies and stimulation of U-shape well for CBM development:With 2014ZX-U-05V/H well of coal 15 in Sihe mine as an example[J]. Coal Geology & Exploration, 2015, 43(6):133-136.

    [18] 娄昊,张强,郝世俊,等. 松软突出煤层地面U型井钻完井施工工艺研究——以西山煤田东于煤矿MJDH01-H井为例[J]. 煤田地质与勘探,2014,42(2):89-92.

    LOU Hao, ZHANG Qiang, HAO Shijun, et al. Research on the construction of running casing in U well in soft outburst-prone coal seam[J]. Coal Geology & Exploration, 2014, 42(2):89-92.

    [19]

    SEINES K,AAVATSMARK I,LIEN S C,et al. Considering wellbore friction effects in planning horizontal wells[J]. Journal of Petroleum Technology,1993,45(10):994-1000.

    [20] 彭马特查. 水平井优化设计与产能评价[M]. 北京:石油工业出版社,2008.
  • 期刊类型引用(4)

    1. 张遵国,钱清侠,陈毅,唐朝. 高压气态CO_2吸附/解吸作用对烟煤的孔隙结构影响研究. 安全与环境学报. 2025(01): 108-120 . 百度学术
    2. 刘廷方,雷杰,黎杰,孙伟,张铎. 液态CO_2溶浸-酸化煤岩有机基团演化实验研究. 煤矿安全. 2023(11): 69-76 . 百度学术
    3. 周西华,韩明旭,白刚,兰安畅,付志豪. CO_2注气压力对瓦斯扩散系数影响规律实验研究. 煤田地质与勘探. 2021(01): 81-86+99 . 本站查看
    4. 刘力源,马文成,王卫东. 超临界CO_2吸附诱发煤力学性质劣化的双重损伤效应分析. 山东科技大学学报(自然科学版). 2020(04): 79-86 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  172
  • HTML全文浏览量:  67
  • PDF下载量:  51
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-05-20
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回