构造煤厚度定量预测技术新进展

马丽, 陈同俊, 王新, 马国栋

马丽, 陈同俊, 王新, 马国栋. 构造煤厚度定量预测技术新进展[J]. 煤田地质与勘探, 2018, 46(5): 66-72. DOI: 10.3969/j.issn.1001-1986.2018.05.011
引用本文: 马丽, 陈同俊, 王新, 马国栋. 构造煤厚度定量预测技术新进展[J]. 煤田地质与勘探, 2018, 46(5): 66-72. DOI: 10.3969/j.issn.1001-1986.2018.05.011
MA Li, CHEN Tongjun, WANG Xin, MA Guodong. Recent progress of quantitative prediction of tectonic coal thickness[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 66-72. DOI: 10.3969/j.issn.1001-1986.2018.05.011
Citation: MA Li, CHEN Tongjun, WANG Xin, MA Guodong. Recent progress of quantitative prediction of tectonic coal thickness[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(5): 66-72. DOI: 10.3969/j.issn.1001-1986.2018.05.011

 

构造煤厚度定量预测技术新进展

基金项目: 

国家自然科学基金项目(41774128,41704115,41430317);国土资源部煤炭资源勘查与综合利用重点实验室开放基金项目(KF2018-5)

详细信息
    作者简介:

    马丽,女,1975年生,陕西三原人,高级工程师,从事煤田地震勘探研究.E-mail:mary248@163.com

    通讯作者:

    陈同俊,男,1977年生,安徽舒城人,博士,教授,从事煤田地震勘探教学与研究.E-mail:tjchen@cumt.edu.cn

  • 中图分类号: P631

Recent progress of quantitative prediction of tectonic coal thickness

Funds: 

National Natural Science Foundation of China(41774128,41704115,41430317)

  • 摘要: 构造煤与原生煤的物性差异明显,是煤层气储层建模需要考虑的关键因素之一。针对构造煤厚度分布预测这一关键问题,以测井曲线和地震属性为数据输入,综合分析了构造煤识别和厚度预测的最新研究进展。相对于交互式测井曲线识别来说,基于小波多尺度分析和聚类分析的构造煤识别方法精度更高、可靠性更好。结合地震属性和机器学习算法,可以获得精度更高的构造煤厚度确定性预测结果。结合地震属性和地质统计学随机模拟,可以获得可靠性更高的构造煤厚度非确定性预测结果。尽管构造煤厚度预测已研究多年,但构造类型和空间位置预测仍然需要进一步研究。
    Abstract: TDCs(Tectonically deformed coal) are obviously different from normal coal in physical characteristics. It is one of the key factors needed to be considered in CBM(coalbed methane) reservoir modeling. In order to figure out the issue of TDC thickness prediction, we analyzed the recent progress in TDC identification and thickness prediction using well logs and seismic attribution as inputs. Compared with the interactive recognition using well logs, the method for identifying TDCs based on wavelet multi-scale analysis and cluster analysis has higher accuracy and better reliability. Combining with seismic attributes and machine learning algorithms, one can produce a deterministic prediction of TDC thickness with more accuracy. Combining with seismic attributes and geostatistical stochastic simulation, one can produce a non-deterministic prediction of TDC thickness with higher reliability. Although the prediction of TDC thickness has been proceeded for many years, the prediction of TDC types and spatial characteristics still need further study.
  • [1] 吴胜和,李宇鹏. 储层地质建模的现状与展望[J]. 海相油气地质,2007,12(3):53-60.

    WU Shenghe,LI Yupeng. Reservoir modeling:Current situation and development porspect[J]. Marine Origin Petroleum Geology,2007,12(3):53-60.

    [2] 刘文岭. 地震约束储层地质建模技术[J]. 石油学报,2008, 29(1):64-68.

    LIU Wenling. Geological modeling technique for reservoir constrained by seismic data[J]. Acta Petrolei Sinica,2008,29(1):64-68.

    [3]

    CAO Y X,DAVIS A,LIU R X,et al. The influence of tectonic deformation on some geochemical properties of coals:A possible indicator of outburst potential[J]. International Journal of Coal Geology,2003,53(2):69-79.

    [4]

    JIANG Bo,QU Zhenghui,WANG G G X,et al. Effects of structural deformation on formation of coalbed methane reservoirs in Huaibei coalfield,China[J]. International Journal of Coal Geology,2010,82(3/4):175-83.

    [5]

    WANG Shugang,ELSWORTH D,LIU Jishan. Permeability evolution during progressive deformation of intact coal and implications for instability in underground coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2013,58:34-45.

    [6]

    CHEN Zhongwei,LIU Jishan,ELSWORTH D,et al. Roles of coal heterogeneity on evolution of coal permeability under unconstrained boundary conditions[J]. Journal of Natural Gas Science and Engineering,2013,15:38-52.

    [7]

    CAPPA F,RUTQVIST J. Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2[J]. International Journal of Greenhouse Gas Control,2011,5(2):336-346.

    [8]

    MORCOTE A,MAVKO G,PRASAD M. Dynamic elastic properties of coal[J]. Geophysics,2010,75(6):227-234.

    [9]

    TENG J,YAO Y,LIU D,et al. Evaluation of coal texture distributions in the southern Qinshui basin,North China:Investigation by a multiple geophysical logging method[J]. International Journal of Coal Geology,2015,140:9-22.

    [10]

    WANG Xin,LI Yan,CHEN Tongjun,et al. Quantitative thickness prediction of tectonically deformed coal using extreme learning machine and principal component analysis:A case study[J]. Computers and Geosciences,2017,101:38-47.

    [11]

    WU Haibo,DONG Shouhua,LI Donghui,et al. Experimental study on dynamic elastic parameters of coal samples[J]. International Journal of Mining Science and Technology,2015, 25(3):447-452.

    [12]

    WANG Yun,XU Xiaokai,YANG Deyi. Ultrasonic elastic characteristics of five kinds of metamorphic deformed coals under room temperature and pressure conditions[J]. Science China-Earth Sciences,2014,57(9):2208-2216.

    [13] 王,许小凯,张玉贵赟. 六种不同变质程度煤的纵横波速度特征及其与密度的关系[J]. 地球物理学报,2012,55(11):3754-3761.

    WANG Yun,XU Xiaokai,ZHANG Yugui. Characteristics of P-wave and S-wave velocities and their relationships with density of six metamorphic kinds of coals[J]. Chinese Journal of Geophysics,2012,55(11):3754-3761.

    [14]

    MARFURT K J,KIRLIN R L. Narrow-band spectral analysis and thin-bed tuning[J]. Geophysics,2001,66(4):1274-1283.

    [15]

    PEREZ-MU OZ T,VELASCO-HERNANDEZ J,HERNANDEZMARTINEZ E. Wavelet transform analysis for lithological characteristics identification in siliciclastic oil fields[J]. Journal Appllied Geophysisc,2013,98:298-308.

    [16]

    KAUFMAN L,ROUSSEEUW P J. Finding Groups in Data[M]. New York:John Wiley & Sons,2008.

    [17]

    MAHMOUD M, ELKATATNY S, RAMADAN E, et al. Development of lithology-based static Young's modulus correlations from log data based on data clustering technique[J]. Journal of Petroleum Science and Engineering,2016,146:10-20.

    [18] 马国栋,陈同俊,崔若飞. 测井曲线识别构造煤实例研究[J]. 地球物理学进展,2017,32(3):1208-1216.

    MA Guodong,CHEN Tongjun,CUI Ruofei. Identification of tectonically deformed coal using well logs:A case study[J]. Progress in Geophysics,2017,32(3):1208-1216.

    [19]

    ALIZADEH B,NAJJARI S,KADKHODAIE-ILKHCHI A. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data:A case study of the South Pars Gas Field,Persian Gulf,Iran[J]. Computers & Geosciences,2012,45:261-269.

    [20]

    WANG Xin,CHEN Tongjun. Quantitative prediction of tectonic coal thickness based on FNN and seismic attributes[J]. Journal of Information and Computational Science, 2014, 11(11):3653-3662.

    [21]

    CHANG C C,LIN C J. LIBSVM:A Library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27.

    [22] 陈同俊,王新,管永伟. 基于SVR和地震属性的构造煤厚度定量预测[J]. 煤炭学报,2015,40(5):1103-1108.

    CHEN Tongjun,WANG Xin,GUAN Yongwei. Quantitative prediction of tectonic coal seam thickness using support vector regression and seismic attributes[J]. Journal of China Coal Society,2015,40(5):1103-1108.

    [23]

    GOOVAERTS P. Geostatistics for natural resources evaluation[M]. New York:Oxford University Press,1997.

    [24]

    REMY N,BOUCHER A,WU J. Applied geostatistics with SGeMS:A user's guide[M]. New York:Cambridge University Press,2009.

    [25]

    CHEN T J,WANG X. Thickness prediction of tectonically deformed coal using calibrated seismic attributes:A case study[J]. ASEG Extended Abstracts of 2016,2016(1):1-5.

    [26]

    CHEN T J, WANG X. Quantitative thickness estimate of tectonically deformed coal using seismic amplitude and sequential Gaussian simulation[C]//Yogyakarta:EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience & Engineering,2018.

  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  156
  • HTML全文浏览量:  66
  • PDF下载量:  15
  • 被引次数: 2
出版历程
  • 收稿日期:  2018-05-11
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回