管线渗漏异常探地雷达数据的电场分量成像分析

金鑫

金鑫. 管线渗漏异常探地雷达数据的电场分量成像分析[J]. 煤田地质与勘探, 2018, 46(2): 159-163. DOI: 10.3969/j.issn.1001-1986.2018.02.024
引用本文: 金鑫. 管线渗漏异常探地雷达数据的电场分量成像分析[J]. 煤田地质与勘探, 2018, 46(2): 159-163. DOI: 10.3969/j.issn.1001-1986.2018.02.024
JIN Xin. Study on electric field component imaging of leakage in pipeline using GPR[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 159-163. DOI: 10.3969/j.issn.1001-1986.2018.02.024
Citation: JIN Xin. Study on electric field component imaging of leakage in pipeline using GPR[J]. COAL GEOLOGY & EXPLORATION, 2018, 46(2): 159-163. DOI: 10.3969/j.issn.1001-1986.2018.02.024

 

管线渗漏异常探地雷达数据的电场分量成像分析

详细信息
    作者简介:

    金鑫,1983年生,男,湖北新洲人,讲师,研究方向为电子信息工程,信息处理、工业机器人技术等.E-mail:171771942@qq.com

  • 中图分类号: P631.2

Study on electric field component imaging of leakage in pipeline using GPR

  • 摘要: 探地雷达(GPR)是管线渗漏探测的有效方法,但是当地下介质分布较为复杂时,难以直接从GPR数据剖面图中准确识别出渗漏异常区。为此,针对渗漏异常区含水量高的特点,根据反射波系数与介电常数的关系,提出了GPR数据的电场分量成像技术。利用时间域有限差分法(FDTD)模拟了不同介电参数的地质模型在GPR中的电磁波响应,由正演模拟结果可知分界面两侧介质的介电常数差异性越大反射波能量越强。最后将GPR数据的电场分量成像技术应用于某工业区管道渗漏探测中。试验结果表明,管道渗漏异常区在电场分量图谱中表现为高幅值区。
    Abstract: Ground penetrating radar(GPR) is an effective method for pipeline leak detection, but when the distribution of underground media is more complex, it is difficult to accurately identify the leakage anomaly from the GPR data profile. In this paper, the imaging technique of GPR data based on electric field component is proposed according to the relationship between the reflection coefficient and the dielectric constant. In this paper, the time-domain finite difference method(FDTD) is used to simulate the electromagnetic response of the geo-electric model with different dielectric constant in the GPR. The results show that the greater the difference in dielectric constant, the stronger the reflected wave energy. Finally, the proposed imaging technique is applied to pipeline leakage detection in an industrial area. The experimental results show that the pipeline leakage anomaly area is characterized by high amplitude area in the electric field component map.
  • [1] 茹瑞典,张金才,耿德庸,等. 地质雷达及其在地质和工程勘察中的应用[J]. 煤田地质与勘探,1995,23(1):55-57.

    RU Ruidian,ZHANG Jincai,GENG Deyong,et al. Ground penetrating radar and its application in geological and engineering investigation[J]. Coal Geology & Exploration,1995,23(1):55-57.

    [2] 李大洪. 地质雷达的应用现状及发展前景[J]. 煤田地质与勘探,1997,25(5):60-64.

    LI Dahong. Current situation and development prospect of the ground penetrating radar[J]. Coal Geology & Exploration,1997, 25(5):60-64.

    [3] 董航,刘四新,王春晖,等. 探地雷达测量近地表含水量的研究[J]. 吉林大学学报(地球科学版),2009,39(1):163-167.

    DONG Hang,LIU Sixin,WANG Chunhui,et al. Study on near-surface water content measurement by ground-penetratingradar[J]. Journal of Jilin University:Earth Science Edition, 2009,39(1):163-167.

    [4] 刘澜波,钱荣毅. 探地雷达:浅表地球物理科学技术中的重要工具[J]. 地球物理学报,2015,58(8):2606-2617.

    LIU Lanbo,QIAN Rongyi. Ground-Penetrating Radar:A critical tool in near-surface geophysics[J]. Progress in Geophysics, 2015,58(8):2606-2617.

    [5] 熊俊楠,孙铭,彭超,等. 基于探地雷达的城镇燃气PE管道探测方法[J]. 物探与化探,2015,39(5):1079-1084.

    XIONG Junnan,SUN Ming,PENG Chao,et al. The method for detection of town gas PE pipeline based on ground-penetratingradar[J]. Geophysical and Geochemical Exploration,2015, 39(5):1079-1084.

    [6] 袁明德. 探地雷达探测地下管线的能力[J]. 物探与化探, 2002,26(2):152-155.

    YUAN Mingde. The capacity of the ground penetrating radar for detecting underground pipelines[J]. Geophysical and Geochemical Exploration,2002,26(2):152-155.

    [7] 刘传孝,蒋金泉,杨永杰. 探地雷达探测地下管道的效果分析[J]. 山东科技大学学报(自然科学版),2001,20(1):57-60.

    LIU Chuanxiao,JIANG Jinquan,YANG Yongjie. Effect analysis of underground pipelines detection with the ground penetrating radar[J]. Journal of Shandong University of Science and Technology:Natural Science,2001,20(1):57-60.

    [8] 战玉宝,张利民,尤春安. 探地雷达探测地下管线的研究[J]. 岩土力学,2004,25(增刊1):133-136.

    ZHAN Yubao,ZHANG Limin,YOU Chun'an. Research on detecting underground pipes and cables by ground penetration radar[J]. Rock and Soil Mechanics,2004,25(S1):133-136.

    [9] 冯,曾昭发,刘四新,等晅. 探地雷达信号处理[M]. 北京:科学出版社,2014.
    [10] 肖宏跃,雷宛,杨威. 地质雷达特征图像与典型地质现象的对应关系[J]. 煤田地质与勘探,2008,36(4):57-61.

    XIAO Hongyue,LEI Wan,YANG Wei. Correspondence between geological characteristics of radar images and typical geological phenomenon[J]. Coal Geology & Exploration,2008,36(4):57-61.

    [11] 吴小平,何继善,柳建新. 电磁波的阻抗变换作用对地质雷达探测效果的影响[J]. 地球物理学进展,2006,21(1):251-255.

    WU Xiaoping,HE Jishan,LIU Jianxin. The effect of the electromagnetic wave's impedance transform to the results of the ground-probing-radar[J]. Progress in Geophysics,2006,21(1):251-255.

    [12] 曾昭发,刘四新,王者江,等. 探地雷达方法原理及应用[M]. 北京:科学出版社,2006.
    [13]

    JOL H M. Ground penetrating radar theory and applications[M]. Holland:Elsevier Science,2009.

    [14] 何兵寿,魏修成. 矿井地质雷达超前探测正演模拟[J]. 煤田地质与勘探,2000,28(5):52-55.

    HE Binshou,WEI Xiucheng. The forward modeling of drift pulled ahead exploration[J]. Coal Geology & Exploration,2000, 28(5):52-55.

    [15] 冯德山,戴前伟,何继善,等. 探地雷达GPR正演模拟的时域有限差分实现(英文)[J]. 地球物理学进展,2006,21(2):630-636.

    FENG Deshan,DAI Qianwei,HE Jishan,et al. Finite difference time domain method of GPR forward simulation[J]. Progress in Geophysics,2006,21(2):630-636.

    [16] 戴前伟,冯德山,王启龙,等. 时域有限差分法在地质雷达二维正演模拟中的应用[J]. 地球物理学进展,2004,19(4):898-902.

    DAI Qianwei,FENG Deshan,WANG Qilong,et al. The application of finite difference time domain method in the ground penetrating radar two-dimension forward simulation[J]. Progress in Geophysics,2004,19(4):898-902.

    [17] 朱云峰,王齐仁,张启,等. 基于FDTD数值技术分析反向障碍物对探地雷达采集数据的影响[J]. 煤田地质与勘探, 2016,44(5):149-154.

    ZHU Yunfeng,WANG Qiren,ZHANG Qi,et al. FDTD numeric technique-based analysis of the influence of reverse obstacle on data acquisition of ground penetrating radar[J]. Coal Geology & Exploration,2016,44(5):149-154.

计量
  • 文章访问数:  169
  • HTML全文浏览量:  93
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-16
  • 发布日期:  2018-04-24

目录

    /

    返回文章
    返回