Simulation and analysis of electric field distribution and its influence factors in coal mine direct current method
-
摘要: 矿井直流电法超前探测效果影响因素较多,为讨论井下不同因素对地下全空间电流场分布的影响,运用Ansoft Maxwell有限元软件,分别建立均匀介质、巷道开挖及低阻异常层状模型进行正演模拟。结果表明:受巷道开挖影响,全空间电场由同心环状分布变为螺旋状分布,且受巷道空腔影响,巷道顶板电场强度、电流密度明显小于底板,靠迎头一侧电流、电流密度在迎头附近出现跳跃增大,呈现电流集中现象。由于地电断面的存在,电场强度和电流密度在分界面处均发生折射现象。受低阻体的"吸引"作用,低阻体内部电流沿其走向流动,电场强度降低而电流密度升高;低阻体外部电场强度升高,电流密度降低;并在异常体边角处出现明显的电流集中现象。受此影响,整个区域视电阻率均有所下降。与理想状态等电位相比,由于巷道及异常体的存在,电场强度和电流密度差值等位线略有畸变,导致掘进迎头前、后等电位面距供电电极并不完全相等,掘进迎头前方小于后方。在实际运用直流电法进行巷道超前探测时,应综合考虑顶底板岩性、厚度及低阻体电阻率、规模及与迎头距离等诸因素对低阻体实际位置的影响。
-
关键词:
- 矿井直流电法超前探测 /
- 影响因素 /
- 电场强度 /
- 模拟分析
Abstract: The advanced DC electric detection is affected by many factors, which mainly affect the distribution of the whole current fields. The Ansoft Maxwell software was used to build up three models (the uniform medium model, tunnel excavation model and low resistivity layer model). The forward simulation showed that the current field distribution changed from concentric circle into spiral because of the tunnel excavation, the roof current intensity and current density were significantly less than the floor, and the current intensity and current density were concentrated near the heading face. Because of the geoelectric section, the current intensity and current density were refraction on the interface. By attraction of the low resistance bodies, the current intensity decreased and the current density increased in low resistance bodies, and current flowed along the bodies. On the contrary, the current intensity increased and the current density decreased outside of low resistance bodies, and the current field was concentrated on the corners. Affected by those, the whole apparent resistivity was decreased.-
Keywords:
- DC electric detection /
- influence factors /
- current field /
- simulation analysis
-
-
[1] 石学峰. 矿井直流电法超前探测影响因素数值模拟[J]. 煤炭技术,2016,35(11):122-124. SHI Xuefeng. Numerical simulation of influencing factors in advance DC electric detection in coal mines[J]. Coal Technology, 2016,35(11):122-124.
[2] 杨华忠,胡雄武,张平松. 井巷直流电法三维超前探测数值模拟[J]. 工程地球物理学报,2013,10(2):200-204. YANG Huazhong,HU Xiongwu,ZHANG Pingsong. Numerical simulation of advance detection by direction current electric method in tunnel[J]. Chinese Journal of Engineering Geophysics,2013,10(2):200-204.
[3] 张成乾,吴荣新,杨伐,等. 直流电法超前探测技术在巷道掘进中的应用与研究[J]. 勘察科学技术,2015(5):61-64. ZHANG Chenqian,WU Rongxin,YANG Fa,et al. Application and study on advanced detection technology of direct current electric method in tunnel excvation[J]. Investigation of Science and Technology,2015(5):61-64.
[4] 王信文. 直流电法超前勘探资料处理技术[C]//安全高效煤矿地质保障技术及应用-中国地质学会、中国煤炭学会煤田地质专业委员会、中国煤炭工业劳动保护科学技术学会水害防治专业委员会学术年会文集. 2007:399-404. [5] 高致宏,王信文,何继宾,等. 电法超前探测技术与矿井含水构造精细探测[J]. 煤矿安全,2006,37(9):29-31. GAO Zhihong,WANG Xinwen,HE Jibin,et al. Advanced detection technology of direct current electric method in mine water bearing structure[J]. Coal Mine Safety,2006,37(9):29-31.
[6] 程久龙,李文,王玉和. 工作面内隐伏含水体电法探测的实验研究[J]. 煤炭学报,2008,33(1):59-62. CHENG Jiulong,LI Wen,WANG Yuhe. Simulation experiment on detecting the hidden water-bearing bodies in working face[J]. Journal of China Coal Society,2008,33(1):59-62.
[7] 徐佳,朱鲁,翟培合,等. 三维电法超前探在巷道掘进水害防治中的应用[J]. 煤炭技术,2014,33(12):58-61. XU Jia,ZHU Lu,ZHAI Peihe,et al. Application of threedimensional electrical method in prevention and control of water disasters during roadway drivage[J]. Coal Technology,2014, 33(12):58-61.
[8] 杨德鹏,翟培合,邢子浩,等. 井下三维高密度电法超前探测技术在煤矿的应用[J]. 煤炭技术,2014,33(12):71-74. YANG Depeng,ZHAI Peihe,XING Zihao,et al. Application of underground 3D electrical resistivity imaging lead survey technology in coal mine[J]. Coal Technology,2014,33(12):71-74.
[9] 董健,翟培合,陈磊,等. 电法超前探技术探讨与应用[J]. 科学技术与工程,2012,12(16):3944-3947. DONG Jian,ZHAI Peihe,CHEN Lei,et al. The study and application of electric method pilot detection technology[J]. Science and Technology and Engineering,2012,12(16):3944-3947.
[10] 李玉宝. 矿井电法超前探测技术[J]. 煤炭科学技术,2002, 30(2):1-3. LI Yubao. Mine electric method pilot detection technology[J]. Coal Science and Technology,2002,30(2):1-3.
[11] 于景,李志聃邨. 高分辨率三极电测深法探测煤矿突水构造[J]. 煤田地质与勘探,1997,25(5):38-42. YU Jingcun,LI Zhidan. The exploration of water gushing structure of coal mine with the sounding method of high resolution tri-electrodes[J]. Coal Geology & Exploration,1997,25(5):38-42.
[12] 刘树才,岳建华,李志聃. 矿井电测深理论曲线变化规律研究[J]. 中国矿业大学学报,1996,25(3):101-105. LIU Shucai,YUE Jianhua,LI Zhidan. Study on change law of theoretical electrical sounding curves in coal mine[J]. Journal of China University of Mining & Technology,1996,25(3):101-105.
[13] 李飞,刘德民,张景钢,等. 基于最小二乘的矿井电法超前探测联合反演方法研究[J]. 煤矿安全,2014,45(6):41-44. LI Fei,LIU Demin,ZHANG Jinggang,et al. Study on mine advance detection joint inversion method based on least squares[J]. Coal Mine Safety,2014,45(6):41-44.
[14] 马炳镇,李貅. 矿井直流电法超前探中巷道影响的数值模拟分析[J]. 煤田地质与勘探,2013,41(1):78-82. MA Bingzhen,LI Xiu. Roadway influences on advance DC detection in underground mine[J]. Coal Geology & Exploration, 2013,41(1):78-82.
[15] 黄俊革,王家林,阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报,2006,49(5):1529-1538. HUANG Junge,WANG Jialin,RUAN Baiyao. Study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics,2006,49(5):1529-1538.
[16] 徐世浙. 地球物理中的有限单元法[M]. 北京:科学出版社, 1994:178-188. [17] 阮百尧,邓小康,刘海飞,等. 坑道直流电阻率超前聚焦探测新方法研究[J]. 地球物理学报,2009,52(1):289-296. RUAN Baiyao,DENG Xiaokang,LIU Haifei,et al. Research on a new method of advanced focus detection with DC resistivity in tunnel[J]. Chinese Journal of Geophysics,2009, 52(1):289-296.
[18] COGGON J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics,1971,36(1):132-145.
[19] 胡宏伶,肖晓,潘克家,等. 基于局部加密等级网格的2.5D直流电法有限元模拟[J]. 中南大学学报(自然科学版),2014, 45(7):2259-2268. HU Hongling,XIAO Xiao,PAN Kejia,et al. Finite element modeling of 2.5D DC resistivity based on locally refined graded mesh[J]. Journal of Central South University(Science and Technology),2014,45(7):2259-2268.
[20] 底青云,王妙月. 稳定电流场有限元法模拟研究[J]. 地球物理学报,1998,41(2):252-260. DI Qingyun,WANG Miaoyue. The real-like 2D FEM modeling research on the field characteristics of direction electric current field[J]. Chinese Journal of Geophysics,1998,41(2):252-260.
[21] 罗延钟,孟永良. 关于用有限单元法对二维构造作电阻率法模拟的几个问题[J]. 地球物理学报,1986,29(6):613-621. LUO Yanzhong,MENG Yongliang. Some problem on resistivity modling for two-dimensional structural by the finite element method[J]. Chinese Journal of Geophysics, 1986, 29(6):613-621.
[22] 刘斌,李术才,李树忱,等. 隧道含水构造电阻率法超前探测正演模拟与应用. 吉林大学学报(地球科学版),2012,42(1):247-254. LIU Bin,LI Shucai,LI Shuchen,et al. Forward modeling and application of electrical resistivity method for detecting water-bearing structure in tunnel[J]. Journal of Jilin University(Earth Science and Edition),2012,42(1):247-254.
[23] 赵博. Ansoft 12在工程电磁场中的应用[M]. 北京:中国水利水电出版社,2010. [24] 刘国强,赵凌志,蒋继娅. Ansoft工程电磁场有限元分析[M]. 北京:电子工业出版社,2005. [25] 邱美成,柳汉丰,曾斌. 超高密度电法在巷道超前探应用研究[J]. 内蒙古煤炭经济,2016(15):117-118. QIU Meicheng,LIU Hanfeng,ZENG Bin. Application of ultra high density resistivity method in roadway advance survey[J]. Journal of Inner Mongolia Coal Economy,2016(15):117-118.
[26] 于善帅. 煤矿掘进工作面电法超前探测技术应用[J]. 江西煤炭科技,2016(3):39-42. YU Shanshuai. Application of electrical method advanced detection technology in driving face in coal mines[J]. Journal of Jiangxi Coal Science & Technology,2016(3):39-42.
[27] 李冰. 直流电法超前探测技术在含水断层构造探测中的应用[J]. 煤炭技术,2015,34(3):113-115. LI Bing. Application of DC law ahead detection technology in detection of moisture fault structure[J]. Coal Technology,2015, 34(3):113-115.
-
期刊类型引用(12)
1. 武强,朱慧聪,胡辰睿,魏新疆,侯柱平,肖璇,刘学,李俊杰,赵佳,程一帆,杨亮,邢一迪,曾一凡. 我国煤层水害基本架构及发展情势. 煤炭工程. 2024(10): 12-21 . 百度学术
2. 杨忠,李晓龙. 带压开采煤层底板破坏深度研究. 能源与环保. 2022(05): 306-310 . 百度学术
3. 王兴明,刘英锋,南生辉,郭康,尚荣. 奥灰承压水上采场底板沿工作面倾向破坏特征分析. 煤炭科学技术. 2022(12): 206-214 . 百度学术
4. 姬东,汪万里,崔风,白振华. 综采放顶煤工作面常见问题及处理方法. 陕西煤炭. 2021(02): 103-106+130 . 百度学术
5. 任辰锋. 构建煤矿水害“十位一体”防治技术体系理论与实践. 能源科技. 2021(02): 22-25 . 百度学术
6. 李晓龙. 煤矿井下水砂突涌钻孔封孔技术研发与应用. 煤田地质与勘探. 2021(04): 192-197 . 本站查看
7. 赵双全. 层次分析法在工作面底板突水影响因素分析的应用. 现代矿业. 2020(04): 200-203 . 百度学术
8. 赵利军,曹恒,朱马别克·达吾力. 复合隔水条件下煤层群涌水控制因素及对瓦斯赋存的影响. 中国安全生产科学技术. 2020(07): 55-60 . 百度学术
9. 曹思文,张民,张振国,朱术云. 下组煤某工作面带压开采奥灰突水危险性探究. 采矿技术. 2020(05): 98-102 . 百度学术
10. 王高峰. 厚煤层综放开采底板水害探查技术. 自动化应用. 2020(09): 136-137 . 百度学术
11. 侯俊华,孟凡贞,冯鲁顺. 东滩煤矿采区构造复杂程度及突水危险性分区对比探究. 现代矿业. 2020(09): 191-194+211 . 百度学术
12. 王志荣,宋沛,温震洋,陈玲霞. 裂隙性储层水平井起裂行为的控制. 工程科学学报. 2020(11): 1449-1456 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 125
- HTML全文浏览量: 37
- PDF下载量: 11
- 被引次数: 17