封闭不良天然气孔突水过程的水文地球化学特征

杨建, 梁向阳, 刘基

杨建, 梁向阳, 刘基. 封闭不良天然气孔突水过程的水文地球化学特征[J]. 煤田地质与勘探, 2017, 45(5): 82-86,93. DOI: 10.3969/j.issn.1001-1986.2017.05.015
引用本文: 杨建, 梁向阳, 刘基. 封闭不良天然气孔突水过程的水文地球化学特征[J]. 煤田地质与勘探, 2017, 45(5): 82-86,93. DOI: 10.3969/j.issn.1001-1986.2017.05.015
YANG Jian, LIANG Xiangyang, LIU Ji. Hydrogeochemical characteristics during water inrush of poorly sealed gas hole[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 82-86,93. DOI: 10.3969/j.issn.1001-1986.2017.05.015
Citation: YANG Jian, LIANG Xiangyang, LIU Ji. Hydrogeochemical characteristics during water inrush of poorly sealed gas hole[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(5): 82-86,93. DOI: 10.3969/j.issn.1001-1986.2017.05.015

 

封闭不良天然气孔突水过程的水文地球化学特征

基金项目: 

国家自然科学基金项目(41302214);国家重点研发计划课题(2016YFC0501104);中煤科工集团西安研究院有限公司科技创新项目(2015XAYMS18)

详细信息
    作者简介:

    杨建(1979—),男,江苏盐城人,博士,副研究员,从事煤矿水文地质研究.E-mail:yangjian@cctegxian.com

  • 中图分类号: TD741;P641.3

Hydrogeochemical characteristics during water inrush of poorly sealed gas hole

Funds: 

National Natural Science Foundation of China(41302214)

  • 摘要: 为了查清封闭不良天然气孔突水过程中充水水源的变化规律,开展了气孔出水水文地球化学特征研究。结果表明:“大53”天然气孔突水过程中TDS浓度逐渐降低,初期为SO4·Cl—Na型水,位于Piper三线图右端部,来自直罗组;中期TDS浓度降至500多mg/L,属于HCO3·SO4·Cl—Na型水,位于Piper三线图右端偏下,来自白垩系;期间煤层底部涌出高TDS的SO4·Cl—Na型水,该水样点位于三线图右端偏上。气孔处理过程中,水样中γ(Ca)/γ(Na)系数均远大于其他水样,且HCO3- 未检出,为煤层顶板直罗组水化学特征,表明阻隔了2-1煤层与白垩系含水层和2煤—6煤含水层的水力联系。取距离阈值20,分层聚类分析可以将水样分为白垩系水和侏罗系水,距离阈值5又可将侏罗系含水层水细分为直罗组2段、直罗组1段和2煤—6煤含水层水,实现了对气孔突水过程中充水水源变化规律的准确判别。
    Abstract: In order to make clear the water-filling source of Hulusu coal mine during water inrush of poorly sealed gas hole, some evaluation methods(e.g., piper three wire drawing, hierarchical clustering law) were used to analysis the hydrogeochemical characteristics of water samples. The results showed that the concentration of TDS decreased gradually. During Initial stage of water inrush, water was of SO4·Cl—Na type and located at the right end of piper three wire drawing and came from Zhiluo Formation. During the middle stage of water inrush, the concentration of TDS decreased to about 500 mg/L. The sampling points were located at the lower right end of piper three wire drawing, water was of HCO3·SO4·Cl—Na type and came from Cretaceous System. During water inrush, water of SO4·Cl—Na type with high TDS gushed out from seam bottom, the water sampling points, the sampling points were located at the upper right end of piper three wire drawing. During treatment of gas hole, γ(Ca)/γ(Na) coefficient in the water was much higher than that of other water samples, and HCO3- was not detected, the water had hydrochemical characteristics of Zhiluo Formation water in seam roof, showing that the hydraulic connection between seam 2-1 and Cretaceous aquifer and seams 2-6 aquifers was cut off. Taking 20 as distance threshold value, hierarchical clustering analysis could divide the water samples into Cretaceous water and Jurassic water, and the distance threshold 5 may divide further the water of Jurassic aquifer into water of second member and first member of Zhiluo Formation, water of seams 2-6 aquifers, realizing accurate discrimination of the variation law of water-filling source during water inrush of gas hole.
  • [1] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报,2011,30(4):544-552.

    WANG Shuangming. Ordos basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China,2011,30(4):544-552.

    [2] 黄文辉,敖卫华,翁成敏,等. 鄂尔多斯盆地侏罗纪煤的煤岩特征及成因分析[J]. 现代地质,2010,24(6):1186-1197.

    HUANG Wenhui,AO Weihua,WENG Chengmin,et al. Characteristics of coal petrology and genesis of Jurassic coal in Ordos basin[J]. Geoscience,2010,24(6):1186-1197.

    [3] 李振宏,董树文,冯胜斌,等. 鄂尔多斯盆地中—晚侏罗世构造事件的沉积响应[J]. 地球学报,2016,36(1):22-30.

    LI Zhenhong,DONG Shuwen,FENG Shengbin,et al. Sedimentary response to middle-late Jurassic tectonic events in the Ordos basin[J]. Acta Geoscientica Sinica,2016,36(1):22-30.

    [4] 侯光才. 鄂尔多斯白垩系盆地地下水系统及其水循环模式研究[D]. 长春:吉林大学,2008.
    [5] 杨建,赵彩凤. 基于工作面顶板疏放水的含水层水力联系研究[J]. 矿业安全与环保,2015,42(5):84-86.

    YANG Jian,ZHAO Caifeng. Research on hydraulic connection of aquifers based on roof dewatering and drainage in working face[J]. Mining Safety and Environmental Protection,2015,42(5):84-86.

    [6] 邸春生,丁湘,黄浩. 深埋侏罗系煤层顶板水探放技术实践—以呼吉尔特矿区葫芦素矿井为例[J]. 煤田地质与勘探,2016,44(6):96-100.

    DI Chunsheng,DING Xiang,HUANG Hao. Practice of exploration and discharge technology of roof water in deep Jurassic coal seam:With hulusu coal mine in Hujiert mine area as example[J]. Coal Geology & Exploration,2016,44(6):96-100.

    [7] 林学钰,廖资生,赵勇胜,等. 现代水文地质学[M]. 北京:地质出版社,2005.
    [8] 卫明明,琚宜文. 沁水盆地南部煤层气田产出水地球化学特征及其来源[J]. 煤炭学报,2015,40(3):629-635.

    WEI Mingming,JU Yiwen. Chemical characteristics and origin of produced waters from coalbed gas field in the southern of Qinshui basin[J]. Journal of China Coal Society,2015,40(3):629-635.

    [9] 刘剑民,王继仁,刘银朋,等. 基于水化学分析的煤矿矿井突水水源判别[J]. 安全与环境学报,2015,15(1):31-35.

    LIU Jianmin,WANG Jiren,LIU Yinpeng,et al. Hydrochemistry analysis based on the source determination of coal mine water-bursts[J]. Journal of Safety and Environment,2015,15(1):31-35.

    [10] 祁春燕,张海荣,路云,等. 封闭不良钻孔管理信息系统的设计与实现[J]. 煤炭科学技术,2008,36(11):69-71.

    QI Chunyan,ZHANG Hairong,LU Yun,et al. Design and practices on management information system of poor sealing boreholes[J]. Coal Science and Technology,2008,36(11):69-71.

    [11] 刘德民,连会青,李飞. 封闭不良钻孔侧壁突水机理研究[J]. 中国安全生产科学技术,2014,10(5):74-77.

    LIU Demin,LIAN Huiqing,LI Fei. Research on mechanism of water-inrush at side face of poor sealing borehole[J]. Journal of Safety Science and Technology,2014,10(5):74-77.

    [12] 张蓓,张桂民,张凯,等. 钻孔导致突水溃沙事故机理及防治对策研究[J]. 采矿与安全工程学报,2015,32(2):219-226.

    ZHANG Bei,ZHANG Guimin,ZHANG Kai,et al. Water and sands bursting mechanism induced by geological borehole and control measures[J]. Journal of Mining & Safety Engineering,2015,32(2):219-226.

    [13] 许延春,王伯生,侯垣麒,等. 封闭不良钻孔可视化探测及效果分析[J]. 中国高新技术企业,2010(25):27-29.

    XU Yanchun,WANG Bosheng,HOU Yuanqi,et al. Visual detection and effect analysis of poor sealing borehole[J]. China High Tech Enterprise,2010(25):27-29.

    [14] 柴敬,袁强,王帅,等. 白垩系含水地层立井突水淹井治理技术[J]. 煤炭学报,2016,41(2):338-344.

    CHAI Jing,YUAN Qiang,WANG Shuai,et al. Water inrush control and restoration of shaft construction in cretaceous aquifer[J]. Journal of China Coal Society,2016,41(2):338-344.

    [15] 李飞飞,张凡斌,牛真茹,等. 集合相交法对出水钻孔水源的分析与判别[J]. 矿业安全与环保,2015,42(5):99-102.

    LI Feifei,ZHANG Fanbin,NIU Zhenru,et al. Analysis and discrimination of borehole water inrush source with set intersection method[J]. Mining Safety and Environmental Protection,2015,42(5):99-102.

    [16] 赵璐,邬立,万军伟. 分层聚类在岩溶水系统分析中的应用[J]. 勘察科学技术,2008(4):45-48.

    ZHAO Lu,WU Li,WAN Junwei. Application of hierarchical cluster in karst-water systems analysis[J]. Site Investigation Science and Technology,2008(4):45-48.

    [17] 龚星,陈植华,罗朝晖. 罗河铁矿水文地球化学特征及成因[J]. 地球科学——中国地质大学学报,2014,39(3):293-302.

    GONG Xing,CHEN Zhihua,LUO Zhaohui. Hydrogeochemical characteristics and genesis of Luohe Iron Deposit[J]. Earth Science-Journal of China University of Geosciences,2014,39(3):293-302.

    [18] 沈照理,朱宛华,钟佐燊. 水文地球化学基础[M]. 北京:地质出版社,1993:87.
计量
  • 文章访问数:  53
  • HTML全文浏览量:  12
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-04
  • 发布日期:  2017-10-24

目录

    /

    返回文章
    返回