蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征

杨建, 梁向阳, 丁湘

杨建, 梁向阳, 丁湘. 蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征[J]. 煤田地质与勘探, 2017, 45(4): 97-101. DOI: 10.3969/j.issn.1001-1986.2017.04.017
引用本文: 杨建, 梁向阳, 丁湘. 蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征[J]. 煤田地质与勘探, 2017, 45(4): 97-101. DOI: 10.3969/j.issn.1001-1986.2017.04.017
YANG Jian, LIANG Xiangyang, DING Xiang. Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 97-101. DOI: 10.3969/j.issn.1001-1986.2017.04.017
Citation: YANG Jian, LIANG Xiangyang, DING Xiang. Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(4): 97-101. DOI: 10.3969/j.issn.1001-1986.2017.04.017

 

蒙陕接壤区深埋煤层开发过程中矿井涌水量变化特征

基金项目: 

国家自然科学基金项目(41302214,41402220);国家重点研发计划项目(2016YFC0501104);中煤科工集团西安研究院有限公司科技创新基金项目(2015XAYMS18)

详细信息
    作者简介:

    杨建(1979-),男,江苏盐城人,博士,副研究员,从事煤矿防治水及水资源化研究.E-mail:yangjian@cctegxian.com

  • 中图分类号: P641.4;TD741

Variation characteristics of mine inflow during mining of deep buried coal seams in Shaanxi and Inner Mongolia contiguous area

Funds: 

National Natural Science Foundation of China(41302214,41402220)

  • 摘要: 蒙陕接壤区侏罗系深埋煤层开采过程中,掌握不同阶段矿井涌水量变化规律,是保障煤矿安全的关键。从含水层发育特征、巷道掘进进尺、采空区半径等方面开展了相关研究,结果表明:蒙陕接壤区煤层顶板导水裂缝带范围内的3层复合含水层,富水性差异较大,分别对巷道掘进阶段和工作面回采阶段涌水量影响较大。煤矿建井阶段,矿井涌水量随着巷道掘进进尺增加而增加,但单位进尺涌水量变化不大,平均涌水量为0.008 32 m3/(h·m)。工作面回采前将钻孔水量降至5.0 m3/h以下,水压降至1.0 MPa左右,实现了顶板含水层静储量充分疏放目标。首采面和接续面回采阶段,矿井涌水量呈"阶梯式"平稳增加,矿井涌水量与采空区半径呈线性正相关关系。通过对侏罗系深埋煤层开采过程中矿井涌水量变化规律和影响因素的研究,可以为其他矿井建设和工作面回采提供安全保障和科学依据。
    Abstract: Variation characteristics of mine inflow are the key for coal mine safety during exploitation of the deep buried coal seams in Shaanxi and Inner Mongolia contiguous area. The characteristics and influence factors(e.g. hydrogeological conditions, roadway tunneling footage and radius of mining goaf) were studied. The results showed that there were three aquifers within range of water flowing fractured zone in Shaanxi and Inner Mongolia contiguous area. Different groundwater inflow affected greatly roadway tunneling and working face mining. Mine water inflow increased with roadway tunneling footage gradually, but unit mine water inflow changed little and the average mine water inflow was 0.008 32 m3/(h·m). When hole water yield and water pressure decreased to less than 5.0 m3/h and 1.0 MPa respectively before extraction, static reserves of roof aquifer were drained completely. Mine water inflow showed stepped gradual increase during the first working face and continuous working face mining. There was a very good linear positive correlation between mine water inflow and radius of goaf. The above research could provide security and scientific basis for other coal mine constructing and working face mining.
  • [1] 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638.

    LIU Chiyang,ZHAO Hongge,GUI Xiaojun,et al. Space-time coordinate of the evolution and reformation and mineral ization response in Ordos basin[J]. Acta Geologica Sinica,2006,80(5):617-638.

    [2] 黄文辉,敖卫华,翁成敏,等. 鄂尔多斯盆地侏罗纪煤的煤岩特征及成因分析[J]. 现代地质,2010,24(6):1186-1197.

    HUANG Wenhui,AO Weihua,WENG Chengmin,et al. Characteristics of coal petrology and genesis of Jurassic coal in Ordos basin[J]. Geoscience,2010,24(6):1186-1197.

    [3] 邸春生,丁湘,黄浩. 深埋侏罗系煤层顶板水探放技术实践-以呼吉尔特矿区葫芦素矿井为例[J]. 煤田地质与勘探,2016,44(6):96-100.

    DI Chunsheng,DING Xiang,HUANG Hao. Practice of exploration and discharge technology of roof water in deep Jurassic coal seam:With Hulusu coal mine in Hujiert mine area as example[J]. Coal Geology & Exploration,2016,44(6):96-100.

    [4] 缪协兴,王长申,白海波. 神东矿区煤矿水害类型及水文地质特征分析[J]. 采矿与安全工程学报,2010,27(9):285-298.

    MIAO Xiexing,WANG Changshen,BAI Haibo. Hydroge-ologic characteristics of mine water hazards in Shendong mining area[J]. Journal of Mining and Safety Engineering,2010,27(9):285-298.

    [5] 刘英锋,王新. 黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J]. 西安科技大学学报,2013,33(4):431-435.

    LIU Yingfeng,WANG Xin. Water hazard prevention and control in Huanglong Jurassic coalfield[J]. Journal of Xi'an University of Science and Technology,2013,33(4):431-435.

    [6] 赵宝峰. 煤层顶板砂岩含水层疏放水效果评价[J]. 矿业安全与环保,2013,40(6):36-38.

    ZHAO Baofeng. Evaluation of drainage effect of roof sandstone aquifer of coal seam[J]. Mining Safety and Environmental Protection,2013,40(6):36-38.

    [7] 于水,杨世凡,王立萌. 麦垛山矿6#煤上行开采可行性分析[J]. 煤矿安全,2014,45(2):35-37.

    YU Shui,YANG Shifan,WANG Limeng. Feasibility analysis on upward mining of 6# coal seam in Maiduoshan coal mine[J]. Safety in Coal Mines,2014,45(2):35-37.

    [8] 许浩,汤达祯,唐书恒,等. 鄂尔多斯盆地西部侏罗系煤储层特征及有利区预测[J]. 煤田地质与勘探,2010,38(1):26-32.

    XU Hao,TANG Dazhen,TANG Shuheng,et al. Coal reservoir characteristics and prospective areas for Jurissic CBM exploitation in western Ordos basin[J]. Coal Geology & Exploration,2010,38(1):26-32.

    [9] 闫建华,王朝引,丁湘. 鄂尔多斯侏罗系煤田水文地质特征及防治水对策[J]. 建井技术,2013,34(6):36-39.

    YAN Jianhua,WANG Chaoyin,DING Xiang. Hydrogeological characteristics of Jurassic coal field in Ordos basin and its water control measures[J]. Mine Construction Technology,2013,34(6):36-39.

    [10] 刘英锋,王世东,王晓蕾. 深埋特厚煤层综放开采覆岩导水裂缝带发育特征[J]. 煤炭学报,2014,39(10):1970-1976.

    LIU Yingfeng,WANG Shidong,WANG Xiaolei. Development characteristics of water flowing fractured zone of overburden deep buried extra-thick coal seam and fully-mechanized caving mining[J]. Journal of China Coal Society,2014,39(10):1970-1976.

    [11] 冯学琳. 乌审旗蒙大矿业有限责任公司纳林河二号矿井首采区补充勘探报告[R]. 榆林:陕西省煤田地质局一八五队, 2011:93-95.
    [12] 吴吉春,薛禹群. 地下水动力学[M]. 北京:中国水利水电出版社,2009.
  • 期刊类型引用(3)

    1. 麻坦. 螺杆钻具三卡瓦偏心打捞筒的研制及应用. 钻探工程. 2024(06): 99-105 . 百度学术
    2. 赵研,艾红欣,高科,张丛珊,吕晓姝,谢晓波. 双钻头自平衡钻进系统用多通道连续缆管设计. 煤田地质与勘探. 2023(04): 164-169 . 本站查看
    3. 董昌乐. 断裂自锁防掉钻杆的设计及应用. 煤田地质与勘探. 2023(06): 200-206 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  64
  • HTML全文浏览量:  12
  • PDF下载量:  10
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-09-14
  • 发布日期:  2017-08-24

目录

    /

    返回文章
    返回