Coal structure and gas controlling effect of seam No.3 in Anze block of Qinshui basin
-
摘要: 沁水盆地安泽区块煤层形成后经历多期构造运动,致使煤体结构遭受不同程度的破坏,煤体结构的分布规律制约本区煤层气的开发。基于此,利用该区的测井资料,提出测井判识煤体结构的方法,将研究区单井3号煤层结构分为Ⅰ、Ⅱ、Ⅲ三种煤体结构类型组合,对比分析3号煤层不同煤体结构煤空间展布与煤层含气量、煤层埋深的相关性。结果表明:安泽地区碎裂-碎粒煤较原生结构煤、糜棱煤发育,南部碎裂-碎粒煤发育较厚,北部以糜棱煤发育相对较薄;煤层含气量随埋深有明显增加的趋势,但在同等埋深条件下,煤层含气量受不同煤体结构展布的影响较大,南部碎裂-碎粒煤发育较厚煤层吸附量大,出现煤层含气量的高值区。Abstract: Anze block of Qinshui basin has experienced several tectonic events since coal-forming period, resulting in the destruction of coal structure at different degrees, the exploitation of coal bed methane(CBM) in Anze block of QinShui basin has been restricted by the undefined distribution of the coal structure. Based on the above-mentioned fact, coal-bed structure of 3# seam in single well is classified into three coal structure types, namelyⅠ,Ⅱand Ⅲ, and the correlations among the spatial distributions, CBM content and burial depth of coal seams of different coal structures are analyzed comparatively by using logging data in the area and putting forward the method to recognize coal structures by logging data. The results showed that the cataclastic-ranulitic structural coal are more universal than undeformed coal and mylonitic structural coal in Anze block.In the south the cataclastic-granulitic structural coal is thick and in the north the mylonitic structural coal is thin. The CBM content increases significantly with the burial depth and is greatly influenced by the distribution of the coal structure at certain buried depth. The high content of CBM is present in the south because of a larger adsorptive capacity in the thick cataclastic-granulitic structural coal in this area.
-
Keywords:
- Anze block /
- coal structure /
- CBM content
-
-
期刊类型引用(12)
1. 石垚,雷瀚,杨新路,徐世达. 煤矿坚硬顶板灾害水力压裂防治技术监测及评估. 煤炭工程. 2024(02): 122-130 . 百度学术
2. 王国举 ,赵立松 ,高刚 ,周金艳 . 基于井下煤层水力压裂的微震时空发育规律研究. 煤炭技术. 2024(05): 207-211 . 百度学术
3. 李斌,杨帆,张红杰,冯雷,安琦,郝召兵. 神府区块深部煤层气高效开发技术研究. 煤田地质与勘探. 2024(08): 57-68 . 本站查看
4. 康红普,冯彦军,张震,赵凯凯,王鹏. 煤矿井下定向钻孔水力压裂岩层控制技术及应用. 煤炭科学技术. 2023(01): 31-44 . 百度学术
5. 贾进章,王东明,李斌. 水力压裂有效压裂半径的影响因素研究. 中国安全生产科学技术. 2022(06): 58-64 . 百度学术
6. 钟坤,陈卫忠,赵武胜,秦长坤,曹怀轩,谢华东. 煤矿坚硬顶板分段水力压裂防冲效果监测与评价. 中南大学学报(自然科学版). 2022(07): 2582-2593 . 百度学术
7. 张辰宇. 基于5G通信技术的矿井开采工作面环境监测系统. 能源与环保. 2022(11): 220-225 . 百度学术
8. 闫文超,崔伟雄,段建华,丛琳,蔺兑波. 井-孔联合微震技术在工作面监测中的应用. 煤矿安全. 2021(11): 95-99 . 百度学术
9. 王选琳,李鹏,周东平,王凯. 煤矿井下水力加砂压裂技术工程应用研究. 河南城建学院学报. 2020(03): 29-37 . 百度学术
10. 姚学庆,时歌声,陈冬冬,郭艳飞,王浩昌. 基于含水率变化的压裂半径考察. 能源与节能. 2020(10): 23-25 . 百度学术
11. 宋延秋. 井下压裂实时监测技术及其应用. 化学工程与装备. 2020(10): 120+126 . 百度学术
12. 邓帅奇,李东会,赵朋朋. 基于煤岩特征弹性参数的掘进煤巷地震波超前探测研究. 煤矿安全. 2020(12): 192-197 . 百度学术
其他类型引用(9)
计量
- 文章访问数: 108
- HTML全文浏览量: 35
- PDF下载量: 14
- 被引次数: 21