煤系锂及锂同位素研究进展

张昀, 魏迎春, 曹代勇, 李新, 靳亮亮, 董博, 王鑫

张昀,魏迎春,曹代勇,等. 煤系锂及锂同位素研究进展[J]. 煤田地质与勘探,2025,53(4):106−118. DOI: 10.12363/issn.1001-1986.25.01.0052
引用本文: 张昀,魏迎春,曹代勇,等. 煤系锂及锂同位素研究进展[J]. 煤田地质与勘探,2025,53(4):106−118. DOI: 10.12363/issn.1001-1986.25.01.0052
ZHANG Yun,WEI Yingchun,CAO Daiyong,et al. Advances in research on lithium in coal-bearing strata and its isotopes[J]. Coal Geology & Exploration,2025,53(4):106−118. DOI: 10.12363/issn.1001-1986.25.01.0052
Citation: ZHANG Yun,WEI Yingchun,CAO Daiyong,et al. Advances in research on lithium in coal-bearing strata and its isotopes[J]. Coal Geology & Exploration,2025,53(4):106−118. DOI: 10.12363/issn.1001-1986.25.01.0052

 

煤系锂及锂同位素研究进展

基金项目: 国家自然科学基金项目(42472231,42372187);宁夏2023年地质事业发展专项项目(640000233000000011005)
详细信息
    作者简介:

    张昀,1996年生,男,山西太原人,博士研究生。E-mail:Yun02200059@outlook.com

    通讯作者:

    魏迎春,1977年生,女,山东巨野人,博士,教授,博士生导师。E-mail:wyc@cumtb.edu.cn

  • 中图分类号: P618;TD11

Advances in research on lithium in coal-bearing strata and its isotopes

  • 摘要:
    意义 

    锂(Li)作为新兴产业的重要战略金属,因其同位素显著的质量分馏效应,Li同位素成为重要的地球化学示踪工具。近年来,煤系Li矿产已成为战略性金属矿产资源勘探的重点。研究煤系Li同位素的组成及变化有助于揭示Li的来源、迁移与富集过程,并为煤系Li矿产的勘探与开发提供理论依据。

    进展 

    从煤系Li的基本特征、同位素组成特征及分馏机制、煤系Li测试方法与提取分离及Li同位素测试分析技术3个方面总结了煤系Li及其同位素的研究进展。(1) Li在地幔和地壳中广泛分布,具有强烈的流体活动性。(2) 2种天然稳定同位素(6Li与7Li)因扩散速率差异及相对质量差,表现出显著的分馏效应,成为关键的地球化学示踪工具。(3)我国煤系Li矿产主要分布于华北石炭−二叠纪和华南晚二叠世煤系中,Li元素主要赋存于次生黏土矿物中,富集过程受沉积成岩、微生物活动、构造作用、岩浆热液活动及地下水迁移等多种因素的共同影响。(4)煤系Li同位素的分馏主要受温度、风化作用、变质作用及次生黏土矿物生成等因素的影响。煤系样品Li含量的测定方法已较为成熟,高精度Li同位素测试技术为Li同位素的广泛应用提供了可能。MC-ICP-MS已初步应用于煤系Li同位素分馏机制的研究,但煤系样品原位微区Li同位素测试技术尚处于探索阶段。由于含煤地层中Li的赋存载体成分和结构复杂,迫切需要开发煤系Li同位素原位分析标准样品和建立测试标准。煤系Li资源分离与提取的关键在于浸出效率的提高和浸出液中Li的提纯、回收。

    展望 

    当前研究存在对于煤系Li同位素分馏机制探索尚浅、测试方法可能存在质量歧视效应、缺乏原位分析标准样品和模拟实验验证等一些不足。提出煤系Li及其同位素的未来发展趋势,包括煤系Li运移的动态过程与富集机制、高精度Li同位素测试分析技术的开发、煤系Li同位素分馏与沉积热演化过程的耦合机制研究和煤系Li资源的分离提取与回收研究等。

    Abstract:
    Significance 

    Lithium serves as a significant strategic metal in emerging industries, and lithium isotopes have become crucial geochemical tracers due to their pronounced mass-dependent fractionation effects. Therefore, lithium minerals in coal-bearing strata have emerged as a priority in recent exploration of strategic metallic mineral resources. Investigating the isotopic composition and variation of lithium in coal-bearing strata helps reveal the sources, migration, and enrichment process of lithium while also providing a theoretical basis for lithium exploration and exploitation in coal-bearing strata.

    Advances 

    This study offers a summary of advances in research on lithium in coal-bearing strata and its isotopes from three aspects: (1) the general characteristics of lithium; (2) the isotopic composition and fractionation mechanisms of lithium, and (3) the test methods, extraction, and separation of lithium, as well as techniques for the tests and analysis of lithium isotopes. The results indicate that lithium is extensively distributed in the mantle and crust, exhibiting strong activity with fluids. Two stable natural isotopes of lithium (i.e., 6Li and 7Li) exhibit significant fractionation effects due to their differences in the diffusion rate and relative mass, establishing them as critical geochemical tracers. Lithium minerals in coal-bearing strata in China are primarily distributed in the Carboniferous to Permian strata in North China and the Late Permian strata in South China. Lithium element occurs principally in secondary clay minerals, with its enrichment jointly influenced by multiple factors like sedimentary diagenesis, microbial activity, tectonism, magmatic-hydrothermal activity, and groundwater migration. The isotopic fractionation of lithium in coal-bearing strata is primarily affected by factors including temperature, weathering, metamorphism, and the formation of secondary clay minerals. The methods for determining lithium content in samples from coal-bearing strata have been relatively mature, and high-precision techniques for lithium isotope tests have offered a possibility for the extensive application of lithium isotopes. Multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been preliminarily employed to investigate the mechanisms behind the isotopic fractionation of lithium in coal-bearing strata, whereas in-situ microanalytical techniques for lithium isotopes in samples from these strata remain in the exploratory stage. The complex compositions and structures of lithium carriers in coal-bearing strata highlight an urgent need to develop standard samples and test criteria for in-situ analysis of lithium isotopes from coal-bearing strata. To separate and extract lithium resources in these strata, the key is to enhance leaching efficiency and perform purification and recovery of lithium from leachate.

    Prospects 

    Current studies on lithium in coal-bearing strata suffer from several limitations, including a limited understanding of the isotopic fractionation mechanisms, the presence of mass discrimination effects of test methods, a lack of standard samples for in-situ analysis, and limited validation through simulation experiments. The trends in research on lithium in coal-bearing strata and its isotopes will focus on the dynamic migration processes and enrichment mechanisms of lithium in coal-bearing strata, the develop of high-precision techniques for the tests and analysis of lithium isotopes, the coupling mechanisms between lithium isotopic fractionation and the sedimentary and thermal evolution processes, and the separation, extraction, and recovery of lithium resources in coal-bearing strata.

  • 锂(Li)作为新兴产业的重要战略性金属,因其稀缺性和分布不均匀性,面临较高的供应风险,被誉为“白色石油”和“能源金属”,已被列为战略资源[1-2]。研究和开发新型Li矿产资源对保障国家资源安全具有重要意义[3-6]。煤系作为特殊沉积岩系,Li在特定地质与地球化学条件下可富集形成Li矿产,尤其是在煤层、夹矸、顶底板及其他黏土岩中[7-9]。我国煤系Li富集区主要分布在华北石炭−二叠纪和华南晚二叠世煤系中[10-12],其中夹矸是Li的主要富集部位[13-14]

    Li的2种稳定同位素(6Li和7Li)因扩散速率差异及较大的相对质量差(16%)导致显著的同位素分馏[15]6Li倾向于进入键长较长、键能较弱的高配位位置,而7Li则富集于低配位位置[16]。在风化、热液作用等流体参与的地质过程中,7Li主要存在于流体相中,6Li则更多分布于固体相[17-18]。由于Li同位素具有独特的地球化学特征,其作为新兴示踪剂在多种地质过程研究中得到广泛应用,在煤系Li矿产研究中不仅可以示踪沉积环境和物源,也可以揭示成矿过程及煤系沉积热演化过程中的Li迁移转化特征,拥有广泛的应用前景[19-20]。煤系Li同位素的分馏程度受到温度、风化作用、变质作用及次生矿物生成等多因素影响[21-23]

    近年来,热电离质谱法(TIMS)、离子探针(SIMS)以及基于等离子体质谱法(ICP-MS、MC-ICP-MS、LA-ICP-MS)等高精度测试方法逐步应用于煤系Li及其同位素研究[19,24-26]。然而,煤系Li同位素分馏机制及其控制因素仍需进一步研究。本文总结了煤系Li的基本特征、同位素组成特征及分馏机制和测试分析技术进展,讨论了目前存在的问题及未来研究方向,以期为煤系Li矿产的勘探和开发提供理论支持与技术依据。

    Li是最轻的碱金属元素(原子序数3,相对原子质量6.941),具有独特的地球化学性质。Li+在矿物转化过程中能与Mg2+发生类质同象替代,在地表风化过程中,Li+可被黏土矿物吸附,与其中的Fe3+和Al3+发生类质同象反应,导致Li在黏土矿物中的超常富集[27]。作为大离子亲石元素,Li在地幔的部分熔融和分离结晶过程中表现为中等不相容元素,其分配系数介于0.1~1.0之间,因此,Li在地壳和地幔中广泛分布,但在地壳中富集程度较高[28]。Li在表生环境中具有显著的化学活动性,尤其在洋壳蚀变、板块俯冲和表生风化过程中表现出强烈的流体迁移特性[19-20],并且在这些过程中发生较大的同位素分馏。Li具有2个稳定同位素(6Li和7Li),其显著的质量差和扩散速率差异使得Li同位素在风化沉积、构造演化等地质活动中产生显著分馏[27,29],因此,Li同位素成为地球化学示踪的重要工具,广泛应用于多种地质过程的研究,例如风化及河流相关的地质过程[30-31],洋壳蚀变与热液活动[32-33],岩浆活动[34],俯冲带壳幔相互作用[35],古海洋及古气候的重建[36]等研究。

    煤系作为一种含有煤层的特殊沉积岩系,由于在其形成过程中富含的有机质和黏土矿物具有吸附性,在特定地质和地球化学条件下可富集形成煤系Li矿产[7-9]。世界煤中Li平均含量为12 μg/g,其中低阶煤为10 μg/g,硬煤为14 μg/g;煤灰中的Li平均含量为66 μg/g[37]。中国煤中Li平均含量为31.8 μg/g[13]。基于对我国富Li煤系的研究成果,80 μg/g作为煤中Li的边界品位,120 μg/g作为回收利用指标[38]。我国煤系Li富集区主要分布在华北石炭−二叠系和华南晚二叠系中,部分煤系夹矸中Li含量显著高于煤层(表1)。在部分富Li煤系中,Li赋存于夹矸、煤层、顶底板及中、下石炭统中的铝土矿、黏土岩和凝灰岩中[64-65]。富Li铝土矿和黏土岩主要分布在山西、河南、重庆、云南、贵州和广西等地区,富Li铝土矿储量较大且分布广泛,具有显著的找矿潜力。而富Li凝灰岩则主要分布于贵州、重庆和四川等地区,凝灰岩中的Li富集层较薄且Li含量差异较大,开发利用潜力相对较小[65]。煤系Li的赋存状态包括硅酸盐态、磷酸盐态和有机态,其中硅酸盐态主要是黏土矿物,其次是云母和电气石等不溶于酸的矿物[11,66-67]

    表  1  中国部分富Li煤系中煤、夹矸的Li含量
    Table  1.  Li content in coals and gangue in some lithium-rich coal-bearing strata in China
    煤田 煤矿 煤层 年代 Li(煤)/(μg·g−1) Li(夹矸)/(μg·g−1) 赋存状态 Li物质来源 数据来源
    宁武煤田安太堡9C278.5338高岭石、绿泥石、勃姆石阴山古陆的钾长花岗岩及
    本溪组铝土矿
    [39]
    南沟2、5P196.3188[40]
    安太堡11C299.05271[41]
    老窖沟5C2163.4214.3[42]
    沁水煤田新景8C2103.8474高岭石、绿泥石、勃姆石[43]
    苏村3P196.85267高岭石、绿泥石、伊利石[44]
    黄土坡9C214124.95[45]
    晋城15C2132225[46]
    西山煤田马兰2P120.1499高岭石[47]
    准格尔煤田官板乌素6C2217397高岭石、勃姆石[23]
    官板乌素6C2263.9656[48]
    哈尔乌素6C2116455.8硅铝酸盐矿物(以高岭石为主)[49]
    哈尔乌素6C283.4290.32[50]
    黑岱沟6C239.1227.9高岭石、绿泥石[51]
    象山5C2127.4230[52]
    桑树坪11C23201 506.5[52]
    大同煤田小峪3P150.6158.2高岭石、勃姆石[53]
    河东煤田柳林3、4P144.9269高岭石、绿泥石[54]
    邯邢煤田峰峰2P157.1黏土矿物、部分有机质[55]
    安鹤煤田鹤壁6C279.0硅铝酸盐矿物[56]
    宁东煤田红石湾5C258.51硅铝酸盐矿物阿拉善古陆和阴山古陆及
    低温热液影响
    [57]
    红一煤矿5C2157.09[57]
    渭北煤田东坡5C285.0阴山古陆的钾长花岗岩、
    低温热液和火山灰影响
    [58]
    陕北煤田冯家塔2、4C284.59阴山古陆的钾长花岗岩及
    本溪组铝土矿和低温热液
    [57]
    海则庙9C2117.02[57]
    鲁西南煤田鲁西3P171.91无机(黏土矿物)质、部分有机质康滇古陆峨眉山玄武岩[59]
    华蓥山煤田磨心坡K1P390.53[60]
    渝东北煤田草堂K1T3291.46低温热液和火山灰影响[61]
    辰溆煤田辰溪P379.40[62]
    扶绥煤田1P397.94广西云开古陆及周边火山岩[63]
    下载: 导出CSV 
    | 显示表格

    煤系经历的地质作用在不同程度上影响了其中元素的迁移和聚集[68-70]。煤系Li的富集通常受陆源母岩岩性、岩浆热液、低温热液、海底喷流、火山灰、地下水及海水环境等地质因素的控制[7-8]。同生阶段输入泥炭沼泽的陆源碎屑被认为是煤系Li的主要来源。例如,准格尔煤田6号煤层中Li的富集主要来源于阴山古陆的钾长花岗岩,并受古地理环境的控制[44]。宁武煤田石炭−二叠系煤中Li的来源与盆地北部隆起的本溪组铝土矿相关[71-72]。我国华北和西南地区部分铝土矿形成过程中Li富集成矿,其Li的来源与下伏基岩经历风化剥蚀作用所形成的古风化壳密切相关[9,64],在风化、淋滤作用下Li逐渐被黏土矿物吸附富集,再经历构造运动将其抬升到近地表,通过二次风化改造和Li富集作用后形成富Li铝土矿[64-65]。火山灰也是煤系Li的重要来源[46],鄂尔多斯盆地南缘石炭−二叠系煤中部分Li由酸性火山物质带来,并通过地下水淋滤作用在煤中富集,以类质同象的方式赋存于黏土矿物中[57]。此外,Li的富集与后生热液活动也有密切关系[46,62]。例如大青山煤田、准格尔煤田官板乌素煤矿及沁水煤田晋城煤矿中的富Li煤系,Li的来源主要属于后期热液成因,其热液来源可能与后期构造热事件相关[11]

    现有煤系Li研究多聚焦于物源、沉积环境及后期热演化等对煤系Li富集的影响,对煤系Li差异性富集的成因缺乏深入研究,从而影响了对煤系Li运移的动态过程和富集的动力学机制的全面认识,有必要采用更可靠的方法和直接证据,来诠释煤系Li的来源和煤系沉积热演化过程中Li的迁移与转化特征。Li同位素(6Li和7Li)由于其较大的质量分馏效应,在水–岩相互作用、风化、热液活动和生物过程等过程中表现出明显的同位素分馏特征。通常6Li更易进入黏土矿物或低温次生矿物,而7Li更富集于液相[17-18],两者的相对变化(δ7Li值)被用于作为一种新兴的示踪剂,既可以示踪煤中Li的来源,也能解析煤系沉积热演化过程中Li的迁移与转化特征。

    Li主要有2个稳定同位素,6Li和7Li,其丰度分别约为7.52%和92.48%,6Li与7Li扩散速率不同,其16%的相对质量差使得Li同位素在自然界中易产生显著的分馏效应[15]。国际通用的Li同位素数据统一用1996年IUPAC规定来表示(sa为样品,st为标准):

    $$ {\delta ^7}{\text{Li}} = \left( {\frac{{{{{(^7}{\text{Li}}{/^6}{\text{Li}})}_{{\text{sa}}}}}}{{{{{(^7}{\text{Li}}{/^6}{\text{Li}})}_{{\text{st}}}}}} - 1} \right) \times {\text{1}} {\text{ 000}}(\text{‰} ) $$ (1)

    图1所示[19-20,73],前人研究初步建立了地球自然界储库及地外行星的Li同位素组成,并探讨了其成因及演化规律。在低温环境下,由于化学吸附、扩散效应及温度变化等因素影响,Li同位素在近地表发生显著分馏,不同储库的δ7Li值差异可达60.0‰[32]。地外样品δ7Li差异较小介于−0.30‰~17.0‰,陆地岩石的δ7Li由于岩浆源区差异较大。由于7Li有优先进入流体相的特性[17-18],导致地壳(δ7Li=0~20‰)相比于上地幔(δ7Li=3.5‰)较轻。陆上流体整体具有较重的Li同位素组成,现代海水的Li同位素组成稳定(δ7Li=31.0‰),但在河流中锂同位素组成可以在一个小流域的尺度上发生强烈的变化(δ7Li=−32.2‰~6.0‰)。有机质的Li同位素较轻(δ7Li=−39.4‰~4.6‰),煤系的Li同位素组成由于受到化学吸附、扩散效应、成岩作用及生物活动等多种因素的共同控制[22],不同物源和沉积热演化条件的差异导致煤系Li同位素差异较大(图1)。

    图  1  地外岩体及自然储库中Li同位素的分布[19-21,73]
    Figure  1.  Lithium isotope distributions in extraterrestrial rock masses and natural reservoirs[19-21,73]

    目前,煤系Li同位素的研究仍处于探索阶段,如图2所示,由于物源、沉积环境及构造热演化等地质条件的差异,各矿区煤中Li同位素组成存在一定差异。

    图  2  中国部分石炭系富Li煤系Li同位素组成特征[23-26,50,72,74]
    Figure  2.  Lithium isotopic composition in some Carboniferous lithium-rich coal-bearing strata in China[23-26,50,72,74]

    稳定同位素分馏通常包括热力学平衡分馏、动力分馏和非质量相关分馏。但由于Li在自然界仅有6Li和7Li 2个稳定同位素,其分馏仅涉及质量相关分馏,主要包括两方面,一是相对质量差引起的同位素热力学平衡分馏;二是两个同位素间扩散速率的差异导致的扩散动力学分馏[75-77]

    温度是Li同位素分馏的关键控制因素,其分馏程度与温度呈负相关[75]。当温度高于350 ℃时,分馏作用较弱,此时Li同位素的分馏主要受其在物相中配位数的影响[76]。在低温环境中,Li同位素分馏非常强烈,近地表不同储库间的δ7Li值差异可达60‰[32]。在地表环境中,Li同位素的分馏较复杂,受温度和风化强度的共同影响[77]。10~50 ℃时硅酸盐开始部分溶解但未发生Li同位素分馏,而50~90 ℃时,开始显现Li同位素分馏效应[78]。90~350 ℃时Li同位素的分馏主要受矿物–流体相互作用、黏土形成、热液蚀变及变质作用控制[78]。煤化作用阶段6Li在有机质和无机质中再分配导致无烟煤中不同相态中Li同位素组成相似,δ7Li值会出现趋同现象,如山西阳泉新景煤成熟度较高,成煤过程中温度较高,最大受热温度为271 ℃,不同赋存状态δ7Li范围较集中[26]

    在风化和热液作用等流体参与的地质过程中,7Li优先进入流体相,6Li则富集于固体相[17-18]。流体中δ7Li值的变化与硅酸盐矿物风化强度密切相关,表现为原生矿物溶解和次生矿物形成的比例差异对Li同位素分馏的影响。原生矿物溶解时,进入八面体结构空位的Li为六次配位,水体中的Li为四次配位,6Li更倾向于进入高配位位置,而7Li富集于低配位位置导致Li同位素分馏[16]

    煤系Li被有机质、黏土矿物四面体层吸附、黏土矿物八面体层吸附和水溶解的Li同位素分馏不同[23-24]。例如,三水铝石表面因较低电荷密度选择性吸附6Li,并使其进入八面体空位,进而引发分馏效应[18]。对于黏土矿物,单层结构黏土中层间交换点位的Li同位素分馏效应可忽略(−2.0‰~0);而多层结构黏土中结构点位的Li则表现出显著分馏,6Li优先向水溶液输出(约−20.0‰)[78]。在风化和沉积过程中,Li从多晶矿物的晶格向矿物表面迁移[24]。煤化过程中随着沉积水体pH升高和高岭石的比表面积减小时,吸附在四面体层的Li会增加,Li吸附在夹矸、顶板黏土和底板黏土表面,吸附剂比表面积的减小导致可用八面体层位的相对减少,有更多Li吸附在四面体层上,使夹矸、顶底板的δ7Li=5.07‰小于煤层的δ7Li=7.04‰[23-24]

    在沉积和成岩作用结束后,压实作用使煤层中的流体向四周扩散,残余流体中的Li逐渐迁移至夹矸及煤层外部,7Li优先从有机质释放到孔隙流体中[21-22],随着煤岩成熟度的变高,δ7Li值逐渐增大 ,同时Li被成岩作用中形成的黏土吸附。在次生矿物形成阶段,6Li可能与Mg2+、Fe2+或Al2+发生置换进入晶格,而7Li则优先被水合物[Li(H2O)4]+吸附[32],使煤层中残余流体的7Li含量增加;后期的压实作用则促使流体扩散进入夹矸,进一步提升夹矸的δ7Li值,如图3所示。

    图  3  压实作用阶段煤系Li同位素的分馏行为[50]
    Figure  3.  Lithium isotopic fractionation in coal-bearing strata in the compaction stage[50]

    煤系Li的分布范围广(表1),但相对含量较低,这使得精确测定煤系Li含量及其同位素组成变得困难。Li元素的测试方法包括分光光度法、火焰原子发射光谱(AES)、原子吸收光谱(AAS)、电感耦合等离子体发射光谱(ICP-OES)、电感耦合等离子质谱(ICP-MS)、仪器中子活化分析(INAA)、X射线荧光光谱(ED-XRF、WD-XRF)等[14,79-80]。近年来,激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)、激光熔蚀多接收器电感耦合等离子体质谱(LA-MC-ICP-MS)、二次离子质谱(SIMS)、纳米二次离子质谱(Nano-SIMS)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FE-SEM)、扫描电镜能谱(SEM-EDS)、电子探针(EPMA)、飞行时间二次离子质谱(TOF-SIMS)和激光拉曼光谱(Laser Raman)等高精度技术已被广泛应用于地质样品中Li含量和赋存状态的研究[79]。煤中微量元素含量测定和微区测试的分辨率及检出范围如图4所示。近年来,ICP-MS已经成为测定煤系Li的一种常用可靠的方法,适用于大批量样品的测试[80],TOF-SIMS和LA-ICP-MS凭借其高灵敏度和优越的空间分辨率,已初步应用于煤系Li元素赋存特征的研究[14,41,52,81]

    图  4  煤中元素含量测定方法的分辨率和探测范围[82]
    Figure  4.  Resolutions and detection ranges of methods for determining element content in coals[82]

    煤系Li资源主要存在于伴生的黏土矿物或燃煤产生的粉煤灰中,煤系中夹矸和煤炭转化产物(主要是粉煤灰)与原煤相比Li含量更高[13-14],当夹矸和煤炭转化产物中Li达到工业开采品位后,可成为Li资源回收的新原料。从粉煤灰中提取Li资源的研究已经得到了广泛关注,其提取工艺流程分为化学浸出和分离纯化2个步骤[83]。煤经过燃烧形成粉煤灰过程中内部矿物晶格被破坏物相发生转变,Li的赋存状态随之发生转变。煤灰中Li主要赋存于非晶相(硅酸盐玻璃相)中,其内部结构主要由Si—O—Al键结合,具有较高的化学稳定性,其次为莫来石、刚玉、石英等[14,80,83]。因此,需要通过机械活化(如研磨)或化学活化(如焙烧)来破坏Si—O—Al键提高Li的浸出效率[84]。焙烧活化通过加助剂焙烧可以有效破坏粉煤灰中硅酸盐玻璃相和莫来石生成易溶的盐类,同时去除未燃碳和易分解矿物[85]。根据所加助剂的不同,主要有钠化焙烧[86]、钙化焙烧[87]、铵法烧结[88]及混合助剂焙烧[89],助剂的种类、用量及焙烧的温度等都会对Li的活化效果产生影响[12]。钠化焙烧法具有较好的活化效果,助剂成本低,焙烧温度较低,但存在助剂和酸消耗量大、灰渣多以及生成凝胶状SiO2等问题,影响后续分离。钙化焙烧法技术成熟且原料来源广,但其高温焙烧、高能耗及难以回收硅的问题仍未解决。铵法烧结法避免酸法腐蚀和碱法废渣问题,能耗低、环保且易于工业化,但产物回收复杂且成本高。混合助剂焙烧通过助剂间的协同作用改善粉煤灰结构,研究相对较少[12]。活化后从粉煤灰中浸出Li的方法主要有酸浸[90]、碱浸[91]和酸碱交替[92]等方法,浸出效果受浸出方法、试剂成分、浸出时间及粉煤灰粒径等因素的控制,从酸性浸出液提Li工艺简单,但除杂难度大,从碱法浸出液提Li存在流程长、能耗高等问题,酸碱交替法提取率较高,但工艺流程复杂,环境影响较大[93]。浸出液中Li质量浓度较低,存在大量如铝、铁、镁、钙、钾等杂质,严重影响Li的选择性分离回收[94]。近年来,中国科学院过程工程所、山西大学和河北工程大学等在粉煤灰浸出液中分离回收Li方面做了大量研究,形成了以沉淀法、吸附法、萃取法为主的粉煤灰浸出液中提取方法,但仍处于理论研究阶段[80,95-96]。采用溶剂萃取法或吸附法进行分离回收工艺复杂,并需考虑溶液体系对Li离子的选择性。沉淀法虽然工艺更简单,但流程复杂、周期长,难以满足工业化生产的需求[12]。现阶段盐湖提Li技术和稀土分离Li技术研究成果较丰富,由于煤系Li载体成分和结构的复杂性,煤系Li的提取与分离技术尚未成熟,盐湖卤水提Li技术和稀土分离Li技术与浸出液提Li的情况相似,都需要对杂质离子净化分离,因此,可为浸出液提取Li提供参考[97-98]

    Li同位素测试方法分为全岩法和原位法。全岩测试法通过湿法消解样品,利用质谱技术测试溶液中的Li同位素组成。原位分析法则可对指定矿物或微区的Li同位素组成进行测试,样品需制备为环氧树脂靶或岩矿薄片。随着科学技术不断进步,部分研究结合全岩法与原位法解决特殊地质问题[80,99]。Li同位素的标准样品主要有两种:一是NIST-LSVEC纯化LiCO3,由美国国家标准技术研究院提供,其7Li/6Li=12.102 5±0.001 6,二是IRMM-016,由欧洲共同体联合研究中心核测量中心局(CBNM)提供[100]。自20世纪80年代以来,Li同位素测试技术迅速发展,热电离质谱(TIMS)、离子探针(SIMS)及多接收器等离子体质谱(MC-ICP-MS)等技术的应用,大幅提高了测试精度。当前Li同位素的测试精度可达0.2‰左右,SIMS微区原位分析精度达到1‰左右(表2)。

    表  2  Li同位素分析方法精度对比[99]
    Table  2.  Comparison of the precision of methods for lithium isotopic analysis[99]
    测试方法样品中Li含量/ng精度/‰数据来源
    TIMS500.50~0.70[101]
    Q-ICP-MS0.2~2.50.80~1.50[102]
    HR-ICP-MS20 000~50 0000.20~0.30[103]
    QQQ-ICP-MS0.15~3 0000.40~0.60[29]
    MC-ICP-MS2~2 0000.13~0.50[104]
    LA-MC-ICP-MS0.1~0.81.00~3.00[105]
    SIMS0.000 01~0.000 10.50~2.80[106]
    下载: 导出CSV 
    | 显示表格

    目前,关于煤系Li同位素测试的研究主要集中在全岩MC-ICP-MS方法上,已有研究显示[21-26,50,72,74],此方法的前处理流程复杂[104],易导致测量误差。与全岩测试相比,原位微区Li同位素测试能够更精确地揭示样品中矿物或有机质的Li同位素分布特征,但实现该方法的关键在于标准样品的开发与制作[80,99],由于煤系中Li的赋存载体(如有机质、黏土矿物)成分和结构较为复杂,且Li的分布较为分散,开发适用于煤系Li同位素测试的标准样品面临较大困难。因此,目前煤系原位微区Li同位素测试的研究仍处于探索阶段,需在标准样品制作、测试技术优化及数据校准等方面取得突破。

    (1)煤系Li动态运移富集机理研究不足。前人围绕物源、沉积环境、后期热演化等对煤系Li富集的影响开展了大量研究并取得了丰硕成果[7-12],然而,对于煤系Li差异性富集成因的深入研究相对薄弱,尤其是煤系沉积热演化过程与元素迁移、聚散之间的内在联系尚未得到系统的认识,限制了对煤中战略性金属元素富集成矿全过程的科学认识。因此,仍需深入探讨和研究煤系Li运移的动态过程和富集的动力学机制。

    (2)煤系Li资源的分离提取技术不够完善。现有煤转化过程中Li的迁移转化规律研究较少,煤系Li资源的分离提取技术工艺复杂,浸出液中Li质量浓度低且与大量杂质混合,对分离纯化环节干扰严重,增加了分离提纯的难度,限制了其工业化进程和大规模应用[14,80]。因此,有必要提高煤系Li资源的分离提取技术的经济性并简化工艺流程,进一步完善分离提纯技术。

    (3) Li同位素测试技术不够完善。MC-ICP-MS测试Li同位素时,样品与标样之间的Li含量和酸介质差异可能引发仪器质量歧视效应,导致测量误差[104]。Li元素对流体高度敏感,采用酸溶液进行消解和分离提纯时,是否会发生Li同位素分馏效应尚需进一步验证。原位分析相比全岩分析,更适用于样品局部Li同位素组成的精细研究。然而在低Li含量样品中,激发出的同位素信号强度不足,难以满足高精度测量需求。因此,迫切需要开发基体一致、同位素均一的煤系Li同位素原位分析标准样品和建立煤系Li同位素原位分析测试标准。由于煤系中Li赋存载体(如有机质、黏土矿物)成分复杂、分布分散,标准样品的制备与开发面临较大挑战。

    (4)煤系Li同位素分馏机制尚未查明。目前对于煤系Li同位素的研究有限,仅有煤系Li同位素组成的报道[21-26,50,72,74]。当前的研究主要集中在静态测试分析上,Li在煤系沉积热演化过程中从物源和热液流体迁移到煤系是动态的过程,受制于煤中金属元素运移过程的研究手段缺乏,对于煤系Li同位素分馏机制认识不足,阻碍了对煤系关键金属富集成矿理论的认识,Li同位素组成是否存在区域性差异及其分馏机制仍需深入探讨。因此,需要采用模拟实验对煤系Li同位素组成进行验证,为建立煤系沉积热演化过程中Li同位素分馏机制提供研究基础。

    (1)煤系Li运移和富集的动力学机制。煤系Li的富集是一个多阶段的动态过程,包括物源区风化、沉积过程的初始分布、成岩作用的次生富集,以及后期热液或构造活动的改造。在这些过程中,Li的运移、吸附与释放行为受到地球化学环境变化(如pH值、温度及氧化还原条件等)的显著影响。然而,目前关于这些动态过程的研究仍然较为薄弱,尤其是煤中Li与其他微量元素的相互作用和竞争吸附机制尚不明确。因此,需要探讨煤系沉积热演化与元素迁移、富集之间的内在联系,从动态角度研究Li的运移规律和成矿机制,为煤系战略性金属矿产的开发与评价提供科学依据。

    (2)煤系Li资源的分离提取与回收。煤转化过程中会进行Li的迁移转化,与原煤相比煤转化产物的组成更简单且Li含量更高,通过合理的煤转化工艺与后处理技术可以将Li分离提取与回收。煤系的Li分布范围较广,相对含量较低,因此,提高Li的提取效率,尤其是在低浓度Li资源中回收Li,是煤系Li资源提取的重点。现阶段煤系提取Li资源的技术尚不成熟,建议借鉴盐湖提Li技术和稀土分离技术等其他领域的优势技术,提高Li的提取效率、简化工艺流程、降低成本,同时加强与其他战略性金属元素的协同提取与分离研究。

    (3)高精度Li同位素测试分析技术体系。Li同位素作为揭示Li来源和迁移富集过程的核心工具,其测试分析精度直接决定了研究的深度和广度。然而,当前的测试技术仍面临诸多挑战,煤系Li同位素原位分析缺乏适用于多种样品的基质校正方法。因此,迫切需要开发基于原位微区分析的标准样品和基质校正方法,结合全岩数据、单矿物及包裹体的微区同位素分析技术。

    (4)煤系Li同位素分馏与煤系沉积热演化过程的耦合机制。煤系Li的富集受多种地质过程控制,包括风化侵蚀、盆地沉积、热液改造及成岩流体活动等。这些过程在不同地质阶段对Li同位素产生了复杂的分馏效应。因此,煤系Li同位素分馏与煤系沉积热演化过程的耦合机制研究已经成为煤地质学的重要研究领域,通过多尺度模拟实验和沉积热演化实验,探讨Li同位素在地质作用中的分馏规律,解析Li在水–岩反应、压实成岩及构造热演化中的矿化信息,揭示Li同位素分馏与沉积热演化的耦合机制。

    (1) 煤系Li的富集机理研究已在沉积成岩作用、微生物活动、构造作用、岩浆热液活动以及地下水迁移等因素对Li富集的影响方面取得了一定进展,然而当前对煤系沉积热演化过程与Li元素迁移聚散的内在联系认识不足,是当前煤系Li矿产研究的问题之一,仍需深入研究探讨煤系Li运移的动态过程与富集动力学机制。

    (2) 目前煤系Li的提取与分离技术取得一定进展,从粉煤灰中浸出Li的技术方法处于理论研究和技术储备阶段,尚未实现工业化应用。因此,需要进一步提高煤系Li的浸出和提纯效率。建议借鉴盐湖提Li和稀土分离等优势技术,简化工艺流程,减少资源浪费、降低成本实现工业化生产,同时加强与其他战略性金属的协同提取与分离方面研究。

    (3) 近年来煤系Li及其同位素测定技术取得突破性进展和创新,大幅提高了测试精度,推动和扩展了煤系Li富集成矿机理和Li同位素的研究领域。然而煤系中Li的赋存载体成分复杂,标准样品的制备和基质校正面临较大挑战,需要在此方面取得突破,开发煤系原位微区Li同位素测试分析技术,建立高精度煤系Li及Li同位素测试技术体系。

    (4) 煤系Li同位素分馏机制研究已经在温度、风化作用、变质作用及次生黏土矿物生成等因素对Li分馏的影响方面取得了一定进展,Li同位素已作为新兴示踪剂初步应用于示踪煤系Li的矿化信息并揭示煤沉积热演化过程中不同地质作用的响应。然而现有的煤系Li同位素研究主要集中在Li同位素组成特征的分析,仍需深入探讨煤系Li同位素分馏与沉积热演化的耦合机制。

  • 图  1   地外岩体及自然储库中Li同位素的分布[19-21,73]

    Fig.  1   Lithium isotope distributions in extraterrestrial rock masses and natural reservoirs[19-21,73]

    图  2   中国部分石炭系富Li煤系Li同位素组成特征[23-26,50,72,74]

    Fig.  2   Lithium isotopic composition in some Carboniferous lithium-rich coal-bearing strata in China[23-26,50,72,74]

    图  3   压实作用阶段煤系Li同位素的分馏行为[50]

    Fig.  3   Lithium isotopic fractionation in coal-bearing strata in the compaction stage[50]

    图  4   煤中元素含量测定方法的分辨率和探测范围[82]

    Fig.  4   Resolutions and detection ranges of methods for determining element content in coals[82]

    表  1   中国部分富Li煤系中煤、夹矸的Li含量

    Table  1   Li content in coals and gangue in some lithium-rich coal-bearing strata in China

    煤田 煤矿 煤层 年代 Li(煤)/(μg·g−1) Li(夹矸)/(μg·g−1) 赋存状态 Li物质来源 数据来源
    宁武煤田安太堡9C278.5338高岭石、绿泥石、勃姆石阴山古陆的钾长花岗岩及
    本溪组铝土矿
    [39]
    南沟2、5P196.3188[40]
    安太堡11C299.05271[41]
    老窖沟5C2163.4214.3[42]
    沁水煤田新景8C2103.8474高岭石、绿泥石、勃姆石[43]
    苏村3P196.85267高岭石、绿泥石、伊利石[44]
    黄土坡9C214124.95[45]
    晋城15C2132225[46]
    西山煤田马兰2P120.1499高岭石[47]
    准格尔煤田官板乌素6C2217397高岭石、勃姆石[23]
    官板乌素6C2263.9656[48]
    哈尔乌素6C2116455.8硅铝酸盐矿物(以高岭石为主)[49]
    哈尔乌素6C283.4290.32[50]
    黑岱沟6C239.1227.9高岭石、绿泥石[51]
    象山5C2127.4230[52]
    桑树坪11C23201 506.5[52]
    大同煤田小峪3P150.6158.2高岭石、勃姆石[53]
    河东煤田柳林3、4P144.9269高岭石、绿泥石[54]
    邯邢煤田峰峰2P157.1黏土矿物、部分有机质[55]
    安鹤煤田鹤壁6C279.0硅铝酸盐矿物[56]
    宁东煤田红石湾5C258.51硅铝酸盐矿物阿拉善古陆和阴山古陆及
    低温热液影响
    [57]
    红一煤矿5C2157.09[57]
    渭北煤田东坡5C285.0阴山古陆的钾长花岗岩、
    低温热液和火山灰影响
    [58]
    陕北煤田冯家塔2、4C284.59阴山古陆的钾长花岗岩及
    本溪组铝土矿和低温热液
    [57]
    海则庙9C2117.02[57]
    鲁西南煤田鲁西3P171.91无机(黏土矿物)质、部分有机质康滇古陆峨眉山玄武岩[59]
    华蓥山煤田磨心坡K1P390.53[60]
    渝东北煤田草堂K1T3291.46低温热液和火山灰影响[61]
    辰溆煤田辰溪P379.40[62]
    扶绥煤田1P397.94广西云开古陆及周边火山岩[63]
    下载: 导出CSV

    表  2   Li同位素分析方法精度对比[99]

    Table  2   Comparison of the precision of methods for lithium isotopic analysis[99]

    测试方法样品中Li含量/ng精度/‰数据来源
    TIMS500.50~0.70[101]
    Q-ICP-MS0.2~2.50.80~1.50[102]
    HR-ICP-MS20 000~50 0000.20~0.30[103]
    QQQ-ICP-MS0.15~3 0000.40~0.60[29]
    MC-ICP-MS2~2 0000.13~0.50[104]
    LA-MC-ICP-MS0.1~0.81.00~3.00[105]
    SIMS0.000 01~0.000 10.50~2.80[106]
    下载: 导出CSV
  • [1]

    BALARAM V,SANTOSH M,SATYANARAYANAN M,et al. Lithium:A review of applications,occurrence,exploration,extraction,recycling,analysis,and environmental impact[J]. Geoscience Frontiers,2024,15(5):101868.

    [2] 翟明国,吴福元,胡瑞忠,等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,2019,33(2):106−111.

    ZHAI Mingguo,WU Fuyuan,HU Ruizhong,et al. Critical metal mineral resources:Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):106−111.

    [3] 蒋少涌,温汉捷,许成,等. 关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J]. 中国科学基金,2019,33(2):112−118.

    JIANG Shaoyong,WEN Hanjie,XU Cheng,et al. Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China,2019,33(2):112−118.

    [4] 曹代勇,魏迎春,李新,等. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨[J]. 煤炭学报,2024,49(1):479−494.

    CAO Daiyong,WEI Yingchun,LI Xin,et al. Discussion on the theory and technical system framework of cooperative exploration of coal and strategic metal resources in coal–bearing strata[J]. Journal of China Coal Society,2024,49(1):479−494.

    [5] 魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查技术方法[J]. 煤炭科学技术,2023,51(12):27−41.

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal–bearing strata[J]. Coal Science and Technology,2023,51(12):27−41.

    [6] 魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查模型[J]. 地质学报,2024,98(8):2517−2530.

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration model of coal and strategic metal resources in coal–bearing strata[J]. Acta Geologica Sinica,2024,98(8):2517−2530.

    [7]

    DAI Shifeng,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155−164. DOI: 10.1016/j.coal.2017.06.005

    [8] 代世峰,赵蕾,王宁,等. 煤系中关键金属元素的成矿作用研究进展与展望[J]. 矿物岩石地球化学通报,2024,43(1):49−63.

    DAI Shifeng,ZHAO Lei,WANG Ning,et al. Advance and prospect of researches on the mineralization of critical elements in coal–bearing sequences[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2024,43(1):49−63.

    [9] 林俊伟,刘东娜,张尚清. 华北兴县含铝岩系矿物特征及物源分析[C]//第十届全国成矿理论与找矿方法学术讨论会论文摘要集. 西安,2023.
    [10] 秦勇. 中国煤系矿产近现代地质研究进展与走向[J]. 煤田地质与勘探,2025,53(1):12−35.

    QIN Yong. Advances and trends of modern and contemporary research on the geology of coal-measure minerals in China[J]. Coal Geology & Exploration,2025,53(1):12−35.

    [11] 曹代勇,秦国红,魏迎春,等. 煤系矿产资源赋存的盆地动力学控制:研究现状与展望[J]. 中国煤炭地质,2020,32(9):38−46.

    CAO Daiyong,QIN Guohong,WEI Yingchun,et al. Basin dynamics controlling of coal measures mineral resources hosting:Research status and expectation[J]. Coal Geology of China,2020,32(9):38−46.

    [12] 曹代勇,魏迎春,秦国红,等. 煤系战略性金属元素富集成矿的构造控制[J]. 煤田地质与勘探,2023,51(1):66−85.

    CAO Daiyong,WEI Yingchun,QIN Guohong,et al. Tectonic control on enrichment and metallogenesis of strategic metal elements in coal measures[J]. Coal Geology & Exploration,2023,51(1):66−85.

    [13]

    DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21. DOI: 10.1016/j.coal.2011.02.003

    [14] 程晨,宋杨,臧静坤,等. 贵州普安矿区20号煤中锂的赋存状态及逐级化学提取实验研究[J]. 煤田地质与勘探,2022,50(10):44−53.

    CHENG Chen,SONG Yang,ZANG Jingkun,et al. Occurrence modes and stepwise chemical extraction experiment of lithium in No. 20 coal seam in Pu’an mining area,Guizhou Province[J]. Coal Geology & Exploration,2022,50(10):44−53.

    [15]

    TOMASCAK P B,MAGNA T,DOHMEN R. Advances in lithium isotope geochemistry[M]. Switzerland:Springer Cham,2016.

    [16]

    YAMAJI K,MAKITA Y,WATANABE H,et al. Theoretical estimation of lithium isotopic reduced partition function ratio for lithium ions in aqueous solution[J]. The Journal of Physical Chemistry A,2001,105(3):602−613.

    [17]

    HUH Y,CHAN L H,ZHANG Libo,et al. Lithium and its isotopes in major world rivers:Implications for weathering and the oceanic budget[J]. Geochimica et Cosmochimica Acta,1998,62(12):2039−2051.

    [18]

    WIMPENNY J,GÍSLASON S R,JAMES R H,et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta,2010,74(18):5259−5279.

    [19] 张婧雯,刘海娇,李杨子,等. 煤炭的非传统稳定同位素研究进展[J]. 地球环境学报,2023,14(1):38−48.

    ZHANG Jingwen,LIU Haijiao,LI Yangzi,et al. A review of recent development of non–traditional stable isotope geochemistry in coal[J]. Journal of Earth Environment,2023,14(1):38−48.

    [20] 陈瑜,徐飞,程宏飞,等. 锂同位素地球化学研究新进展[J]. 地学前缘,2023,30(5):469−490.

    CHEN Yu,XU Fei,CHENG Hongfei,et al. Lithium isotope geochemistry:A review[J]. Earth Science Frontiers,2023,30(5):469−490.

    [21]

    HARKNESS J S,RUHL L S,MILLOT R,et al. Lithium isotope fingerprints in coal and coal combustion residuals from the United States[J]. Procedia Earth and Planetary Science,2015,13:134−137.

    [22]

    TEICHERT Z,BOSE M,WILLIAMS L B. Lithium isotope compositions of U. S. coals and source rocks:Potential tracer of hydrocarbons[J]. Chemical Geology,2020,549:119694.

    [23]

    HE Maoyong,LUO Chongguang,LU Hai,et al. Measurements of lithium isotopic compositions in coal using MC–ICP–MS[J]. Journal of Analytical Atomic Spectrometry,2019,34(9):1773−1778.

    [24]

    HE Hongtao,WANG Jinxi,XING Lecai,et al. Enrichment mechanisms of lithium in the No. 6 coal seam from the Guanbanwusu Mine,Inner Mongolia,China:Explanations based on Li isotope values and density functional theory calculations[J]. Journal of Geochemical Exploration,2020,213:106510.

    [25]

    SUN Beilei,GUO Zhanming,LIU Chao,et al. Lithium isotopic composition of two high–lithium coals and their fractions with different lithium occurrence modes,Shanxi Province,China[J]. International Journal of Coal Geology,2023,277:104338.

    [26] 孙蓓蕾,孔艳磊,王国权,等. 高锂无烟煤中不同赋存态锂同位素组成趋同特征及其机理[J]. 煤炭学报,2022,47(5):1773−1781.

    SUN Beilei,KONG Yanlei,WANG Guoquan,et al. Convergence and its mechanism of lithium isotopic composition with different occurrence states in Li–rich anthracite[J]. Journal of China Coal Society,2022,47(5):1773−1781.

    [27]

    MORIGUTI T,SHIBATA T,NAKAMURA E. Lithium,boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in Northeastern Japan:Mineralogical controls on slab–derived fluid composition[J]. Chemical Geology,2004,212(1/2):81−100.

    [28]

    SEITZ H M,WOODLAND A B. The distribution of lithium in peridotitic and pyroxenitic mantle lithologies:An indicator of magmatic and metasomatic processes[J]. Chemical Geology,2000,166(1/2):47−64.

    [29]

    VON STRANDMANN P A E P,FRASER W T,HAMMOND S J,et al. Experimental determination of Li isotope behaviour during basalt weathering[J]. Chemical Geology,2019,517:34−43.

    [30]

    SEITZ H M,BREY G P,LAHAYE Y,et al. Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes[J]. Chemical Geology,2004,212(1/2):163−177.

    [31]

    RYAN J G,LANGMUIR C H. The systematics of lithium abundances in young volcanic rocks[J]. Geochimica et Cosmochimica Acta,1987,51(6):1727−1741.

    [32]

    RUDNICK R L,TOMASCAK P B,NJO H B,et al. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina[J]. Chemical Geology,2004,212(1/2):45−57.

    [33]

    CHAN L H,ALT J C,TEAGLE D A H. Lithium and lithium isotope profiles through the upper oceanic crust:A study of seawater–basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters,2002,201(1):187−201.

    [34]

    YANG Dan,HOU Zengqian,ZHAO Yue,et al. Lithium isotope traces magmatic fluid in a seafloor hydrothermal system[J]. Scientific Reports,2015,5:13812.

    [35]

    XIAO Yan,ZHANG Hongfu,DELOULE E,et al. Large lithium isotopic variations in minerals from peridotite xenoliths from the Eastern North China Craton[J]. The Journal of Geology,2015,123(1):79−94.

    [36]

    SUN He,XIAO Yilin,GAO Yongjun,et al. Rapid enhancement of chemical weathering recorded by extremely light seawater lithium isotopes at the Permian–Triassic boundary[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(15):3782−3787.

    [37]

    KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148.

    [38] 孙玉壮,赵存良,李彦恒,等. 煤中某些伴生金属元素的综合利用指标探讨[J]. 煤炭学报,2014,39(4):744−748.

    SUN Yuzhuang,ZHAO Cunliang,LI Yanheng,et al. Minimum mining grade of the selected trace elements in Chinese coal[J]. Journal of China Coal Society,2014,39(4):744−748.

    [39]

    DI Shaobo,DAI Shifeng,NECHAEV V P,et al. Mineralogy and enrichment of critical elements (Li and Nb–Ta–Zr–Hf–Ga) in the Pennsylvanian coals from the Antaibao Surface Mine,Shanxi Province,China:Derivation of pyroclastics and sediment–source regions[J]. International Journal of Coal Geology,2023,273:104262.

    [40]

    HAO Huidi,LI Jingzhi,WANG Jinxi,et al. Distribution characteristics and enrichment model of valuable elements in coal:An example from the Nangou Mine,Ningwu Coalfield,Northern China[J]. Ore Geology Reviews,2023,160:105599.

    [41]

    SUN Beilei,LIU Yunxia,TAJCMANOVA L,et al. Insitu analysis of the lithium occurrence in the No. 11 coal from the Antaibao mining district,Ningwu Coalfield,Northern China[J]. Ore Geology Reviews,2022,144:104825.

    [42]

    LIU Bangjun,WANG Junyan,HE Hongtao,et al. Geochemistry of Carboniferous coals from the Laoyaogou Mine,Ningwu Coalfield,Shanxi Province,Northern China:Emphasis on the enrichment of valuable elements[J]. Fuel,2020,279:118414.

    [43]

    HOU Yuehua,LIU Dongna,ZHAO Fenghua,et al. Mineralogical and geochemical characteristics of coal from the southeastern Qinshui Basin:Implications for the enrichment and economic value of Li and REY[J]. International Journal of Coal Geology,2022,264:104136.

    [44]

    WANG Xiaomei,WANG Xiaoming,PAN Zhejun,et al. Mineralogical and geochemical characteristics of the Permian coal from the Qinshui Basin,Northern China,with emphasis on lithium enrichment[J]. International Journal of Coal Geology,2019,214:103254. DOI: 10.1016/j.coal.2019.103254

    [45]

    XIE Panpan,HOWER J C,NECHAEV V P,et al. Lithium and redox–sensitive (Ge,U,Mo,V) element mineralization in the Pennsylvanian coals from the Huangtupo Coalfield,Shanxi,Northern China:With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater[J]. Fuel,2021,300:120948. DOI: 10.1016/j.fuel.2021.120948

    [46]

    ZHAO Lei,DAI Shifeng,NECHAEV V P,et al. Enrichment origin of critical elements (Li and rare earth elements) and a Mo–U–Se–Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield,southeastern Qinshui Basin,Northern China[J]. Ore Geology Reviews,2019,115:103184. DOI: 10.1016/j.oregeorev.2019.103184

    [47]

    LI Jintao,LIU Linsong,KANG Xingjian,et al. Enrichment of lithium in the claystone coal gangue from the Malan Mine,Xishan Coalfield,Shanxi Province,Northern China[J]. Geochemistry,2023,83(2):125972. DOI: 10.1016/j.chemer.2023.125972

    [48]

    SUN Yuzhuang,YANG Jingjing,ZHAO Cunliang. Minimum mining grade of associated Li deposits in coal seams[J]. Energy Exploration & Exploitation,2012,30(2):167−170.

    [49]

    DAI Shifeng,LI Dan,CHOU Chenlin,et al. Mineralogy and geochemistry of boehmite–rich coals:New insights from the Haerwusu surface mine,Jungar Coalfield,Inner Mongolia,China[J]. International Journal of Coal Geology,2008,74(3/4):185−202.

    [50]

    QIN Guohong,WEI Jinhao,WEI Yingchun,et al. The differences in the Li enrichment mechanism between the No. 6 Li–rich coals and parting in Haerwusu Mine,Ordos Basin:Evidenced using in situ Li microscale characteristics and Li isotopes[J]. Minerals,2024,14(8):836. DOI: 10.3390/min14080836

    [51]

    DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2006,66(4):253−270. DOI: 10.1016/j.coal.2005.08.003

    [52]

    JIU Bo,HUANG Wenhui,SPIRO B,et al. Distribution of Li,Ga,Nb,and REEs in coal as determined by LA–ICP–MS imaging:A case study from Jungar Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2023,267:104184.

    [53]

    ZHANG Shuai,YUAN Tangchen,SUN Bo,et al. Formation of boehmite through desilication of volcanic–ash–altered kaolinite and its retention for gallium:Contribution to enrichment of aluminum and gallium in coal[J]. International Journal of Coal Geology,2024,281:104404.

    [54]

    YANG Ning,TANG Shuheng,ZHANG Songhang,et al. In seam variation of element–oxides and trace elements in coal from the eastern Ordos Basin,China[J]. International Journal of Coal Geology,2018,197:31−41.

    [55] 魏迎春,华芳辉,何文博,等. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,2020,45(4):1473−1487.

    WEI Yingchun,HUA Fanghui,HE Wenbo,et al. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area[J]. Journal of China Coal Society,2020,45(4):1473−1487.

    [56]

    WEI Yingchun,HE Wenbo,QIN Guohong,et al. Lithium enrichment in the No. 21 coal of the Hebi No. 6 Mine,Anhe Coalfield,Henan Province,China[J]. Minerals,2020,10(6):521.

    [57] 秦国红. 鄂尔多斯盆地晚古生代煤中微量元素富集特征与成因类型[D]. 北京:中国矿业大学(北京),2020.

    QIN Guohong. Enrichment characteristics and genetic types of trace elements in the Late Paleozoic coal from Ordos Basin[D]. Beijing:China University of Mining & Technology-Beijing,2020.

    [58]

    QIN Guohong,CAO Daiyong,WEI Yingchun,et al. Geochemical characteristics of the Permian coals in the Junger–Hebaopian mining district,northeastern Ordos Basin,China:Key role of paleopeat–forming environments in Ga–Li–REY enrichment[J]. Journal of Geochemical Exploration,2020,213:106494.

    [59]

    WANG Zhen,DAI Shifeng,ZOU Jianhua,et al. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan,Southwest China:Concentration,characterization and optimized extraction[J]. International Journal of Coal Geology,2019,203:1−14. DOI: 10.1016/j.coal.2019.01.001

    [60]

    DAI Shifeng,XIE Panpan,JIA Shaohui,et al. Enrichment of U–Re–V–Cr–Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield,Chongqing,China:Genetic implications from geochemical and mineralogical data[J]. Ore Geology Reviews,2017,80:1−17. DOI: 10.1016/j.oregeorev.2016.06.015

    [61]

    ZHOU Mingxuan,ZHAO Lei,WANG Xibo,et al. Mineralogy and geochemistry of the Late Triassic coal from the Caotang Mine,northeastern Sichuan Basin,China,with emphasis on the enrichment of the critical element lithium[J]. Ore Geology Reviews,2021,139:104582. DOI: 10.1016/j.oregeorev.2021.104582

    [62]

    LI Weiwei,TANG Yuegang. Sulfur isotopic composition of superhigh–organic–sulfur coals from the Chenxi Coalfield,Southern China[J]. International Journal of Coal Geology,2014,127:3−13. DOI: 10.1016/j.coal.2014.02.006

    [63]

    DAI Shifeng,ZHANG Weiguo,WARD C R,et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield,Guangxi Province,Southern China:Influences of terrigenous materials and hydrothermal fluids[J]. International Journal of Coal Geology,2013,105:60−84. DOI: 10.1016/j.coal.2012.12.003

    [64] 朱尤青,罗朝坤,杨晓飞,等. 黔中地区蔡家坝铝土矿床富锂铝土岩地球化学特征及沉积环境研究[J]. 地质与勘探,2024,60(4):735−746.

    ZHU Youqing,LUO Chaokun,YANG Xiaofei,et al. Geochemical characteristics and sedimentary environment of Li–rich bauxite in the Caijiaba bauxite deposit,central Guizhou Province[J]. Geology and Exploration,2024,60(4):735−746.

    [65] 程宏飞,周轩平. 沉积型锂矿的成矿特征及锂赋存状态研究进展[J]. 金属矿山,2024(5):28−40.

    CHENG Hongfei,ZHOU Xuanping. Research progress on the metallogenic characteristics of sedimentary lithium deposits and the occurrence state of lithium[J]. Metal Mine,2024(5):28−40.

    [66]

    DAI Shifeng,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth–Science Reviews,2021,222:103815.

    [67]

    WARD C R. Analysis,origin and significance of mineral matter in coal:An updated review[J]. International Journal of Coal Geology,2016,165:1−27.

    [68] 唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004.
    [69] 任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
    [70] 曹代勇,魏迎春. 鄂尔多斯盆地煤系矿产赋存规律与资源评价[M]. 北京:科学出版社,2019.
    [71]

    LI Xin,WEI Yingchun,CAO Daiyong,et al. Cooperative exploration model of coal–lithium deposit:A case study of the Haerwusu coal–lithium deposit in the Jungar Coalfield,Inner Mongolia,Northern China[J]. Minerals,2024,14(2):179. DOI: 10.3390/min14020179

    [72] 王金喜. 宁武盆地石炭二叠系煤中锂富集的沉积控制[D]. 徐州:中国矿业大学,2019.

    WANG Jinxi. Sedimentary control of lithium enrichment in Permo–Carboniferous coals from Ningwu Basin,Shanxi,China[D]. Xuzhou:China University of Mining and Technology,2019.

    [73] 苟龙飞,金章东,贺茂勇. 锂同位素示踪大陆风化:进展与挑战[J]. 地球环境学报,2017,8(2):89−102.

    GOU Longfei,JIN Zhangdong,HE Maoyong. Using lithium isotopes traces continental weathering:Progresses and challenges[J]. Journal of Earth Environment,2017,8(2):89−102.

    [74] 左贵彬. 河南禹州煤田石炭–二叠纪煤中锂的富集机理[D]. 邯郸:河北工程大学,2021.

    ZUO Guibin. Mechanism of lithium enrichment in Carboniferous–Permian coals in Yuzhou Coalfield,Henan Province[D]. Handan:Hebei University of Engineering,2021.

    [75]

    TENG Fangzhen,LI Wangye,RUDNICK R L,et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters,2010,300(1/2):63−71.

    [76]

    WUNDER B,MEIXNER A,ROMER R L,et al. Temperature–dependent isotopic fractionation of lithium between clinopyroxene and high–pressure hydrous fluids[J]. Contributions to Mineralogy and Petrology,2006,151(1):112−120. DOI: 10.1007/s00410-005-0049-0

    [77]

    LI Wenshuai,LIU Xiaoming,CHADWICK O A. Lithium isotope behavior in Hawaiian regoliths:Soil–atmosphere–biosphere exchanges[J]. Geochimica et Cosmochimica Acta,2020,285:175−192. DOI: 10.1016/j.gca.2020.07.012

    [78]

    LI Su,NIE Junsheng,REN Xueping,et al. Increased primary mineral dissolution control on a terrestrial silicate lithium isotope record during the middle Miocene Climate Optimum[J]. Geochimica et Cosmochimica Acta,2023,348:41−53. DOI: 10.1016/j.gca.2023.03.009

    [79] 李献华,刘宇,汤艳杰,等. 离子探针Li同位素微区原位分析技术与应用[J]. 地学前缘,2015,22(5):160−170.

    LI Xianhua,LIU Yu,TANG Yanjie,et al. In situ Li isotopic microanalysis using SIMS and its applications[J]. Earth Science Frontiers,2015,22(5):160−170.

    [80] 徐飞,秦身钧,李神勇,等. 煤及煤灰中锂的地球化学及其提取研究进展[J]. 煤炭科学技术,2021,49(9):220−229.

    XU Fei,QIN Shenjun,LI Shenyong,et al. Research progress on geochemistry and extraction of lithium from coal and coal ash[J]. Coal Science and Technology,2021,49(9):220−229.

    [81]

    ZHANG Shuai,XIU Wei,SUN Bo,et al. Provenance of multi–stage volcanic ash recorded in the Late Carboniferous coal in the Jungar Coalfield,North China,and their contribution to the enrichment of critical metals in the coal[J]. International Journal of Coal Geology,2023,273:104265. DOI: 10.1016/j.coal.2023.104265

    [82]

    JIU Bo,JIN Zhijun,WANG Zhaoguo. Multiscale insitu elemental characterization of critical elements in low rank coal,implications for modes of occurrence[J]. Fuel,2023,349:128632. DOI: 10.1016/j.fuel.2023.128632

    [83] 方丹,夏阳超,李永改,等. 煤系战略性金属锂镓的富集分离研究进展[J]. 金属矿山,2024(1):233−243.

    FANG Dan,XIA Yangchao,LI Yonggai,et al. Research Progress on Enrichment and Separation of Strategic Metal Lithium and Gallium from Coal-related Resources[J]. Metal Mine,2024(1):233−243.

    [84] 赵泽森,高建明,郭彦霞,等. 不同活化条件下粉煤灰中锂的酸碱溶出特性[J]. 环境科学研究,2018,31(3):569−576.

    ZHAO Zesen,GAO Jianming,GUO Yanxia,et al. Acid–alkali dissolution characteristics of lithium in fly ash under different activation conditions[J]. Research of Environmental Sciences,2018,31(3):569−576.

    [85]

    MONDAL S,GHAR A,SATPATI A K,et al. Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin[J]. Hydrometallurgy,2019,185:93−101. DOI: 10.1016/j.hydromet.2019.02.005

    [86] 代红,李彦恒,侯晓琪,等. 粉煤灰碳酸钠烧结工艺中影响锂浸出率因素的研究[J]. 有色金属(冶炼部分),2015(4):17−19.

    DAI Hong,LI Yanheng,HOU Xiaoqi,et al. Study of factors effecting lithium leaching rate from coal ash in sodium carbonate sintering process[J]. Nonferrous Metals (Extractive Metallurgy),2015(4):17−19.

    [87]

    BRAOS–GARCı́A P,MAIRELES–TORRES P,RODRı́GUEZ–CASTELLÓN E,et al. Gas–phase hydrogenation of acetonitrile over nickel supported on alumina– and mixed alumina/gallium oxide–pillared tin phosphate catalysts[J]. Journal of Molecular Catalysis A:Chemical,2001,168(1/2):279−287.

    [88] 隋丽丽,翟玉春,孙莹莹. 粉煤灰硫酸氢铵焙烧法提取氧化铝的研究[J]. 有色金属(冶炼部分),2017(4):20−24.

    SUI Lili,ZHAI Yuchun,SUN Yingying. Study on extraction of Al2O3 from fly ash by ammonium bisulfate roasting[J]. Nonferrous Metals (Extractive Metallurgy),2017(4):20−24.

    [89] 杨敬杰,孙红娟,彭同江,等. 硫酸/硫酸铵混合助剂焙烧粉煤灰提取Al2O3[J]. 硅酸盐学报,2016,44(10):1538−1542.

    YANG Jingjie,SUN Hongjuan,PENG Tongjiang,et al. Alumina extraction from coal fly ash with ammonium sulfate and sulfuric acid[J]. Journal of the Chinese Ceramic Society,2016,44(10):1538−1542.

    [90] 侯晓琪,李彦恒,代红,等. 从粉煤灰中浸出锂的工艺研究[J]. 河北工程大学学报(自然科学版),2015,32(1):58−61.

    HOU Xiaoqi,LI Yanheng,DAI Hong,et al. Leaching of lithium from fly ash using carbonate[J]. Journal of Hebei University of Engineering (Natural Science Edition),2015,32(1):58−61.

    [91] 侯永茹,李彦恒,代红,等. 用吸附法从粉煤灰碱性溶液里提取锂[J]. 粉煤灰综合利用,2015,29(3):10−11.

    HOU Yongru,LI Yanheng,DAI Hong,et al. Experimental study on litohium extraction from fly ash alkaline solution by absorption method[J]. Fly Ash Comprehensive Utilization,2015,29(3):10−11.

    [92] 单雪媛. 粉煤灰中有价元素分布规律及浸出行为研究[D]. 太原:山西大学,2019.

    SHAN Xueyuan. Study on distribution and extraction characteristics of valuable elements in fly ash[D]. Taiyuan:Shanxi University,2019.

    [93] 朱士飞,毛礼鑫,曹泊,等. 基于正交实验对煤灰中锂提取率多因素分析[J]. 煤炭技术,2023,42(7):221−225.

    ZHU Shifei,MAO Lixin,CAO Bo,et al. Multi–factor analysis of lithium extraction rate from coal ash based on orthogonal experiment[J]. Coal Technology,2023,42(7):221−225.

    [94]

    RUDNIK E. Coal and coal by–products as unconventional lithium sources:A review of occurrence modes and hydrometallurgical strategies for metal recovery[J]. Minerals,2024,14(8):849. DOI: 10.3390/min14080849

    [95] 苏慧,朱兆武,王丽娜,等. 矿石资源中锂的提取与回收研究进展[J]. 化工学报,2019,70(1):10−23.

    SU Hui,ZHU Zhaowu,WANG Lina,et al. Research progress in extraction and recovery of lithium from hard–rock ores[J]. CIESC Journal,2019,70(1):10−23.

    [96] 程芳琴,王波,成怀刚. 粉煤灰提取高附加值有价元素的技术现状及进展[J]. 无机盐工业,2017,49(2):1−4.

    CHENG Fangqin,WANG Bo,CHENG Huaigang. Research progress of extracting high added value elements from fly ash[J]. Inorganic Chemicals Industry,2017,49(2):1−4.

    [97] 苏慧,朱兆武,王丽娜,等. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报,2019,33(7):2119−2126.

    SU Hui,ZHU Zhaowu,WANG Lina,et al. Advances and prospects of extracting and recovering lithium from salt lake brines[J]. Materials Reports,2019,33(7):2119−2126.

    [98] 张文杰,童雄,谢贤,等. 稀土分离纯化技术研究现状[J]. 中国稀土学报,2022,40(1):24−37.

    ZHANG Wenjie,TONG Xiong,XIE Xian,et al. A review on research of rare earths separation and purification technology[J]. Journal of the Chinese Society of Rare Earths,2022,40(1):24−37.

    [99] 周晴,贺茂勇,孔凡翠,等. 锂同位素高精度测定进展、应用与发展趋势[J]. 盐湖研究,2025,33(1):1−17.

    ZHOU Qing,HE Maoyong,KONG Fancui,et al. Advancements,applications and development trends in high–precision lithium isotope analysis[J]. Journal of Salt Lake Research,2025,33(1):1−17.

    [100] 汤艳杰,张宏福,英基丰. 锂同位素分馏机制讨论[J]. 地球科学,2009,34(1):43−55.

    TANG Yanjie,ZHANG Hongfu,YING Jifeng. Discussion on fractionation mechanism of lithium isotopes[J]. Earth Science,2009,34(1):43−55.

    [101]

    BHUSHAN K S,GOSWAMI P G,RAO R M. Precise determination of 6Li/7Li isotopic ratio with NaLiBO2+ ion using total evaporation and ion integration by Thermal Ionization Mass Spectrometry (TIMS)[J]. International Journal of Mass Spectrometry,2021,469:116683. DOI: 10.1016/j.ijms.2021.116683

    [102]

    MISRA S,FROELICH P N. Measurement of lithium isotope ratios by quadrupole–ICP–MS:Application to seawater and natural carbonates[J]. Journal of Analytical Atomic Spectrometry,2009,24(11):1524−1533.

    [103]

    MAGNA T,JANOUŠEK V,KOHÚT M,et al. Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction–related origin of some A–type granites[J]. Chemical Geology,2010,274(1/2):94−107.

    [104] 蔺洁,刘勇胜,胡兆初,等. MC–ICP–MS准确测定地质样品中锂同位素组成[J]. 矿物岩石地球化学通报,2016,35(3):458−464.

    LIN Jie,LIU Yongsheng,HU Zhaochu,et al. Accurate analysis of lithium isotopic composition of geological samples by MC–ICP–MS[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2016,35(3):458−464.

    [105]

    XU Rong,LIU Yongsheng,TONG Xirun,et al. Insitu trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian,North China Craton:Insights into Pacific slab subduction–related mantle modification[J]. Chemical Geology,2013,354:107−123. DOI: 10.1016/j.chemgeo.2013.06.022

    [106]

    BECK P,CHAUSSIDON M,BARRAT J A,et al. Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks:The case of pyroxene phenocrysts from nakhlite meteorites[J]. Geochimica et Cosmochimica Acta,2006,70(18):4813−4825. DOI: 10.1016/j.gca.2006.07.025

图(4)  /  表(2)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-21
  • 修回日期:  2025-03-21
  • 录用日期:  2025-04-24
  • 刊出日期:  2025-04-24

目录

/

返回文章
返回