Key technologies for surface control of gas dynamic disasters in coal mines and their application
-
摘要:目的意义
随着采煤深度增加,煤炭开采面临的煤与瓦斯突出、冲击地压及复合动力灾害愈发突出,深化致灾机理、发展多元化防治技术对于煤矿安全生产意义重大,利用煤层气开发关键技术治理煤矿瓦斯动力灾害是实现煤矿生产“安全关口前移”的必由之路。但目前尚未形成规模化适用性技术体系。
方法从地面煤层气开发的关键技术应用视角,系统述评了煤层气钻完井、压裂等技术的发展历程和研究进展;从煤矿安全角度详细梳理了近70年来煤矿瓦斯动力灾害的致灾机理及关键技术。结合煤层气开发技术特点和煤矿动力灾害防治需求,提出了在理论创新和技术攻关方面的一些建议。
结果和结论(1)在理论研究方面,深化开展煤与煤层气(瓦斯)综合勘查,并融合多种手段开展精细地质研究。(2)在治理技术方面,进一步探究洞穴消突井+高压空气(液氮、CO2)涤荡+负压抽采、地面L型水平井分段压裂+排采等煤与瓦斯突出治理技术,以及顶板L型井分段水力压裂、顶板L型井分段水力加砂压裂+排采等冲击地压治理技术。在此基础上,优选煤层气开发L型分段压裂等先进技术并开展现场瓦斯动力灾害治理试验,通过实施科研−工程一体化工程项目,探索不同防治理论及技术在不同地质条件下的适用性,构建适用于煤矿瓦斯动力灾害防治的技术系列,为我国煤矿安全生产保驾护航。
Abstract:Objective and SignificanceAs the coal mining depth increases, coal mining faces increasingly prominent challenges including coal and gas outbursts, rock bursts, and compound dynamic disasters. Deepening the understanding of disaster-causing mechanisms and developing diversified prevention and control technologies are significant for the safe production of coal mines. Employing the key technologies for coalbed methane (CBM) production to control gas-related dynamic disasters is an inevitable course for the safe production of coal mines. However, large-scale, suitable technology systems are yet to be developed.
MethodsFrom the perspective of the application of key technologies for surface CBM production, this study systematically reviews the development history and research advances in technologies including well drilling and completion for CBM production and fracturing. From the angle of coal mine safety, this study organizes the disaster-causing mechanisms and critical control technologies for gas dynamic disasters over the past 70 years. In combination with the characteristics of CBM production technologies and the demand for the prevention and control of dynamic disasters in coal mines, this study proposes some suggestions for theoretical innovation and technological breakthroughs.
Results and ConclusionsIn terms of theoretical research, it is necessary to deepen the comprehensive exploration of coals and CBM and conduct fine-scale geological studies by integrating multiple approaches. Regarding control technologies, efforts should be made to further explore the control technologies for coal and gas outbursts and rock bursts, with the former including (1) outburst elimination using cavity-type tube wells+high-pressure air/liquid nitrogen/CO2 scrubbing + negative-pressure drainage and (2) multistage fracturing of L-shaped surface horizontal wells+production and the latter including (1) multistage hydraulic fracturing of roofs using L-shaped wells and (2) proppant injection-based multistage hydraulic fracturing for roofs using L-shaped wells+production. Accordingly, advanced technologies such as multistage fracturing of L-shaped wells for CBM production should be employed to conduct on-site experiments on gas dynamic disaster control. It is necessary to explore the applicability of varying prevention and control theories and technologies under different geologic conditions based on scientific research and engineering integrated engineering and projects and develop technology systems for the prevention and control of gas dynamic disasters in coal mines, thus providing robust support for the safe production of coal mines in China.
-
-
井型 压裂方式 技术优势 应用地点 效果 直井 填砂分层压裂 技术难度低,成本低 所有主力区块,
中−高渗储层增产效果相对有限,
单井产气量一般低于1 000 m3/d水平井 泵送桥塞分段压裂 大排量、大液量、压裂段数不受限制,体积造缝 沁水盆地、
鄂尔多斯盆地增产效果良好 普通油管底封拖动压裂 工艺简单,成本低,可分段放喷 沁水盆地 增产效果良好 连续油管底封拖动压裂 施工压力低,施工周期短 沁水盆地 明显优于普通油管底封拖动压裂 桥射联作分段压裂 全程带压连续作业,排量大,射孔段长,
可分簇,施工周期较短沁水盆地 明显优于普通油管底封拖动压裂 封隔器−滑套分段压裂 定点压裂、施工便捷 沁水盆地寺河井田 增产效果显著 表 2 煤与瓦斯突出治理技术汇总
Table 2 Summary of technologies for coal and gas outburst control
地质条件 典型矿区/矿井 防治措施 应用实例 高瓦斯、
硬煤山西晋城矿区、河南安阳矿区、
重庆松藻同华煤矿、峰峰大淑村矿开釆保护层[89]、钻孔抽采[90]、
预抽瓦斯[2]、水力压裂[91-92]、
降压解吸[93]
邻近层瓦斯抽采(山西晋城)[94]高瓦斯、
软煤红阳西马矿井、抚顺徐家大沟矿井、
韩城下峪口煤矿、平顶山矿区中西部矿井、
北票台吉矿井、汾河矿区回坡底矿井、
沈阳红菱煤矿、邯郸陶二煤矿、淮北芦岭煤矿密集顺层钻孔抽采/卸压抽采[95-96]、
保护层开采[97-98]、
煤层顶板水平井压裂采气[44]
密集穿层钻孔及顺层钻孔
(淮北芦岭煤矿)[95]高瓦斯、
高应力、
软煤淮南潘一矿、淮南谢一矿、重庆地区、
平顶山矿区东部矿井、万盛南桐矿井保护层开采卸压消除瓦斯与应力集中[99]、
水力强化技术[91]、
瓦斯抽−抑协作水力接替精准治理技术
保护层开采(淮南潘一煤矿)[100]瓦斯含量与
煤体结构
不均一洛阳新义煤矿、靖远魏家地煤矿、
永城陈四楼煤矿、潞安王庄煤矿软煤夹层水射流层状卸压增透
抽采[101-103]
水射流层状(洛阳新义煤矿)[103]表 3 冲击地压治理技术汇总
Table 3 Summary of technologies for rock burst control
类型
(特点)典型矿区/矿井 防治措施 应用实例 构造型
(构造成因的
结构弱面)彬长孟村煤矿、开滦赵各庄煤矿、
义马千秋煤矿、义马跃进煤矿、
济宁梁宝寺煤矿等基于结构面探测的强卸强支[111]、
开采不接近断层[117]、
留设煤柱[117]
巷道强支护技术(彬长孟村煤矿)[111]顶板型
(顶板强硬岩层)彬长孟村煤矿、甘肃华亭煤矿、衮矿
东滩煤矿、枣庄联创煤矿、七台河
桃山煤矿、北京大台煤矿、彬长胡家河
煤矿、新汶华丰煤矿、彬长小庄煤矿等地面水平井分段压裂[118]、深孔爆破[78]、
刚柔一体化支护[115,119]、
井上下立体防治[118]、开采保护层[111],
多点拖动分段压裂[120-121]
L型井分段压裂技术
(彬长孟村煤矿)[118]煤柱型
(孤岛煤柱)山西斜沟煤矿、呼吉尔特葫芦素煤矿、
山东梁宝寺煤矿,山东赵楼煤矿、
开滦唐山煤矿、兖州东滩煤矿、临沂
古城煤矿、肥城梁宝寺煤矿、星村煤矿、
朝阳煤矿、彬长孟村煤矿等大直径钻孔卸压[122-123]、煤层顶板
预爆破[124-125]、对穿卸压钻孔贯穿[123]、
爆破孔[123,125]、控制工作面推采
速度[125]
大直径钻孔卸压技术
(呼吉尔特葫芦素煤矿)[122] -
[1] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40. QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:Establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.
[2] 王恩元,张国锐,张超林,等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报,2022,47(1):297−322. WANG Enyuan,ZHANG Guorui,ZHANG Chaolin,et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society,2022,47(1):297−322.
[3] 袁亮,薛俊华,张农,等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望[J]. 煤炭科学技术,2013,41(9):6−11. YUAN Liang,XUE Junhua,ZHANG Nong,et al. Development orientation and status of key technology for mine underground coal bed methane drainage as well as coal and gas simultaneous mining[J]. Coal Science and Technology,2013,41(9):6−11.
[4] 刘见中,孙海涛,雷毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267. LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.
[5] 李国富,张遂安,季长江,等. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系[J]. 煤炭科学技术,2022,50(12):14−25. LI Guofu,ZHANG Sui’an,JI Changjiang,et al. Mechanism and technical system of ground and underground combined drainage of CBM in “four region linkage” in coal mining area[J]. Coal Science and Technology,2022,50(12):14−25.
[6] 门相勇,娄钰,王一兵,等. 中国煤层气产业“十三五”以来发展成效与建议[J]. 天然气工业,2022,42(6):173−178. DOI: 10.3787/j.issn.1000-0976.2022.06.015 MEN Xiangyong,LOU Yu,WANG Yibing,et al. Development achievements of China’s CBM industry since the 13th Five–Year Plan and suggestions[J]. Natural Gas Industry,2022,42(6):173−178. DOI: 10.3787/j.issn.1000-0976.2022.06.015
[7] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14. DOI: 10.12363/issn.1001-1986.21.12.0736 XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14. DOI: 10.12363/issn.1001-1986.21.12.0736
[8] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682. DOI: 10.11698/PED.20220856 XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682. DOI: 10.11698/PED.20220856
[9] 张群,降文萍,姜在炳,等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探,2023,51(1):139−158. DOI: 10.12363/issn.1001-1986.22.05.0400 ZHANG Qun,JIANG Wenping,JIANG Zaibing,et al. Present situation and technical research progress of coalbed methane surface development in coal mining areas of China[J]. Coal Geology & Exploration,2023,51(1):139−158. DOI: 10.12363/issn.1001-1986.22.05.0400
[10] 吴裕根,门相勇,娄钰. 我国“十四五”煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13. DOI: 10.3969/j.issn.1672-7703.2024.01.001 WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five–Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13. DOI: 10.3969/j.issn.1672-7703.2024.01.001
[11] 孙粉锦,王勃,李梦溪,等. 沁水盆地南部煤层气富集高产主控地质因素[J]. 石油学报,2014,35(6):1070−1079. DOI: 10.7623/syxb201406004 SUN Fenjin,WANG Bo,LI Mengxi,et al. Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J]. Acta Petrolei Sinica,2014,35(6):1070−1079. DOI: 10.7623/syxb201406004
[12] 张雷,徐凤银,李子玲,等. 煤层气田单/合层开发影响因素分析及应用:以保德区块为例[J]. 煤田地质与勘探,2022,50(9):68−77. DOI: 10.12363/issn.1001-1986.21.12.0865 ZHANG Lei,XU Fengyin,LI Ziling,et al. Analysis on influencing factors of single/multi–layer development of coalbed methane field:A case study of Baode Block[J]. Coal Geology & Exploration,2022,50(9):68−77. DOI: 10.12363/issn.1001-1986.21.12.0865
[13] 高德利. 非常规油气井工程技术若干研究进展[J]. 天然气工业,2021,41(8):153−162. DOI: 10.3787/j.issn.1000-0976.2021.08.014 GAO Deli. Some research advances in well engineering technology for unconventional hydrocarbon[J]. Natural Gas Industry,2021,41(8):153−162. DOI: 10.3787/j.issn.1000-0976.2021.08.014
[14] 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18. DOI: 10.3787/j.issn.1000-0976.2022.06.001 GAO Deli,BI Yansen,XIAN Bao’an. Technical advances in well types and drilling & completion for high–efficient development of coalbed methane in China[J]. Natural Gas Industry,2022,42(6):1−18. DOI: 10.3787/j.issn.1000-0976.2022.06.001
[15] 鲜保安,高德利,徐凤银,等. 中国煤层气水平井钻完井技术研究进展[J]. 石油学报,2023,44(11):1974−1992. DOI: 10.7623/syxb202311017 XIAN Bao’an,GAO Deli,XU Fengyin,et al. Research progress of coalbed methane horizontal well drilling and completion technology in China[J]. Acta Petrolei Sinica,2023,44(11):1974−1992. DOI: 10.7623/syxb202311017
[16] 陈天,易远元,李甜甜,等. 中国煤层气勘探开发现状及关键技术展望[J]. 现代化工,2023,43(9):6−10. CHEN Tian,YI Yuanyuan,LI Tiantian,et al. Current situation of CBM exploration and development in China and prospects on key technologies[J]. Modern Chemical Industry,2023,43(9):6−10.
[17] 孔祥文,赵庆波,孙粉锦,等. 煤层气高产富集规律及开采特征研究新进展[J]. 天然气地球科学,2011,22(4):738−746. DOI: 10.11764/j.issn.1672-1926.2011.04.738 KONG Xiangwen,ZHAO Qingbo,SUN Fenjin,et al. New advances of productive & enriching patterns and production characteristics of coalbed methane in China[J]. Natural Gas Geoscience,2011,22(4):738−746. DOI: 10.11764/j.issn.1672-1926.2011.04.738
[18] 乔磊,申瑞臣,黄洪春,等. 煤层气多分支水平井钻井工艺研究[J]. 石油学报,2007,28(3):112−115. DOI: 10.3321/j.issn:0253-2697.2007.03.023 QIAO Lei,SHEN Ruichen,HUANG Hongchun,et al. Drilling technology of multi–branch horizontal well[J]. Acta Petrolei Sinica,2007,28(3):112−115. DOI: 10.3321/j.issn:0253-2697.2007.03.023
[19] 张永平,杨延辉,邵国良,等. 沁水盆地樊庄–郑庄区块高煤阶煤层气水平井开采中的问题及对策[J]. 天然气工业,2017,37(6):46−54. DOI: 10.3787/j.issn.1000-0976.2017.06.007 ZHANG Yongping,YANG Yanhui,SHAO Guoliang,et al. Problems in the development of high–rank CBM horizontal wells in the Fanzhuang–Zhengzhuang Block in the Qinshui Basin and countermeasures[J]. Natural Gas Industry,2017,37(6):46−54. DOI: 10.3787/j.issn.1000-0976.2017.06.007
[20] 朱庆忠,杨延辉,王玉婷,等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业,2017,37(10):27−34. DOI: 10.3787/j.issn.1000-0976.2017.10.004 ZHU Qingzhong,YANG Yanhui,WANG Yuting,et al. Optimal geological–engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry,2017,37(10):27−34. DOI: 10.3787/j.issn.1000-0976.2017.10.004
[21] 胡秋嘉,李梦溪,贾慧敏,等. 沁水盆地南部高煤阶煤层气水平井地质适应性探讨[J]. 煤炭学报,2019,44(4):1178−1187. HU Qiujia,LI Mengxi,JIA Huimin,et al. Discussion of the geological adaptability of coal–bed methane horizontal wells of high–rank coal formation in southern Qinshui Basin[J]. Journal of China Coal Society,2019,44(4):1178−1187.
[22] 秦绍锋,王若仪. 潘河区块煤层气L型水平井排采工艺及配套技术研究[J]. 煤炭科学技术,2019,47(9):132−137. QIN Shaofeng,WANG Ruoyi. Study on gas drilling technology and supporting technology for L–type horizontal well in Panhe Block[J]. Coal Science and Technology,2019,47(9):132−137.
[23] 王冀川,白宇杉,张光波,等. L型套管压裂水平井压裂改造技术研究及应用[J]. 中国煤层气,2022,19(3):16−20. DOI: 10.3969/j.issn.1672-3074.2022.03.004 WANG Jichuan,BAI Yushan,ZHANG Guangbo,et al. Research and application of fracturing technology for L–shaped casing fracturing horizontal well[J]. China Coalbed Methane,2022,19(3):16−20. DOI: 10.3969/j.issn.1672-3074.2022.03.004
[24] 朱庆忠,鲁秀芹,杨延辉,等. 郑庄区块高阶煤层气低效产能区耦合盘活技术[J]. 煤炭学报,2019,44(8):2547−2555. ZHU Qingzhong,LU Xiuqin,YANG Yanhui,et al. Coupled activation technology for low–efficiency productivity zones of high–rank coalbed methane in Zhengzhuang Block,Shanxi,China[J]. Journal of China Coal Society,2019,44(8):2547−2555.
[25] 王聪,张庆辉,屈晓荣,等. 沁水盆地里必区块L型水平井产能预测及经济评价研究[J]. 煤炭工程,2017,49(10):122−125. WANG Cong,ZHANG Qinghui,QU Xiaorong,et al. Productivity prediction and economic evaluation of L type horizontal well in Libi Block[J]. Coal Engineering,2017,49(10):122−125.
[26] 曹立虎,张遂安,石惠宁,等. 煤层气多分支水平井井身结构优化[J]. 石油钻采工艺,2014,36(3):10−14. CAO Lihu,ZHANG Sui’an,SHI Huining,et al. Wellbore structure optimization to multi–lateral horizontal CBM well[J]. Oil Drilling & Production Technology,2014,36(3):10−14.
[27] 乔磊,申瑞臣,黄洪春,等. 沁水盆地南部低成本煤层气钻井完井技术[J]. 石油勘探与开发,2008,35(4):482−486. DOI: 10.3321/j.issn:1000-0747.2008.04.014 QIAO Lei,SHEN Ruichen,HUANG Hongchun,et al. Low–cost drilling and completion techniques for coalbed methane in southern Qinshui Basin,Central China[J]. Petroleum Exploration and Development,2008,35(4):482−486. DOI: 10.3321/j.issn:1000-0747.2008.04.014
[28] 孙佃金,孙蕾. 地质导向技术在煤层气水平井施工中的应用[J]. 煤田地质与勘探,2015,43(2):106−108. DOI: 10.3969/j.issn.1001-1986.2015.02.022 SUN Dianjin,SUN Lei. Application of geosteering technology in construction of CBM horizontal well[J]. Coal Geology & Exploration,2015,43(2):106−108. DOI: 10.3969/j.issn.1001-1986.2015.02.022
[29] 施斌全,亢武臣. E–link电磁波无线随钻测量系统在煤层气钻井中的应用[J]. 煤田地质与勘探,2010,38(2):68−70. DOI: 10.3969/j.issn.1001-1986.2010.02.017 SHI Binquan,KANG Wuchen. Application of E–link electromagnetic measurement while drilling system in drilling coal bed methane well[J]. Coal Geology & Exploration,2010,38(2):68−70. DOI: 10.3969/j.issn.1001-1986.2010.02.017
[30] 申瑞臣,屈平,杨恒林. 煤层井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2010,38(3):1−7. DOI: 10.3969/j.issn.1001-0890.2010.03.001 SHEN Ruichen,QU Ping,YANG Henglin. Advancement and development of coal bed wellbore stability technology[J]. Petroleum Drilling Techniques,2010,38(3):1−7. DOI: 10.3969/j.issn.1001-0890.2010.03.001
[31] 郑力会,孟尚志,曹园,等. 绒囊钻井液控制煤层气储层伤害室内研究[J]. 煤炭学报,2010,35(3):439−442. ZHENG Lihui,MENG Shangzhi,CAO Yuan,et al. Laboratory studies on control coal bed methane formation damage by Fuzzy–Ball based drilling fluids[J]. Journal of China Coal Society,2010,35(3):439−442.
[32] 许朋琛,陈宁,胡景东,等. 可降解清洁钻井液的研究及现场应用[J]. 钻井液与完井液,2017,34(3):27−32. DOI: 10.3969/j.issn.1001-5620.2017.03.005 XU Pengchen,CHEN Ning,HU Jingdong,et al. Study and field application of degradable clear drilling fluid[J]. Drilling Fluid & Completion Fluid,2017,34(3):27−32. DOI: 10.3969/j.issn.1001-5620.2017.03.005
[33] 高德利,刘维,万绪新,等. PDC钻头钻井提速关键影响因素研究[J]. 石油钻探技术,2023,51(4):20−34. DOI: 10.11911/syztjs.2023022 GAO Deli,LIU Wei,WAN Xuxin,et al. Study on key factors influencing the ROP improvement of PDC bits[J]. Petroleum Drilling Techniques,2023,51(4):20−34. DOI: 10.11911/syztjs.2023022
[34] 鲜保安,孙平,王一兵,等. 煤层气水平井欠平衡钻井技术研究与应用[J]. 中国煤层气,2008,5(1):5−8. DOI: 10.3969/j.issn.1672-3074.2008.01.002 XIAN Bao’an,SUN Ping,WANG Yibing,et al. Research and application of under–balanced drilling technology in drilling horizontal CBM well[J]. China Coalbed Methane,2008,5(1):5−8. DOI: 10.3969/j.issn.1672-3074.2008.01.002
[35] 郭辉. 彬长矿区煤层气水平对接井欠平衡钻井技术[J]. 煤矿安全,2017,48(9):81−84. GUO Hui. Under–balanced drilling technology for CBM horizontally–butted wells in Binchang mining area[J]. Safety in Coal Mines,2017,48(9):81−84.
[36] 黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238. HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
[37] 杨勇,崔树清,倪元勇,等. 煤层气仿树形水平井的探索与实践[J]. 天然气工业,2014,34(8):92−96. YANG Yong,CUI Shuqing,NI Yuanyong,et al. A new attempt of a CBM tree–like horizontal well:A pilot case of well ZS 1P–5H in the Qinshui Basin[J]. Natural Gas Industry,2014,34(8):92−96.
[38] LIU Yikun,WANG Fengjiao,TANG Huimin,et al. Well type and pattern optimization method based on fine numerical simulation in coal–bed methane reservoir[J]. Environmental Earth Sciences,2015,73(10):5877−5890. DOI: 10.1007/s12665-015-4375-x
[39] 朱庆忠,左银卿,杨延辉. 如何破解我国煤层气开发的技术难题:以沁水盆地南部煤层气藏为例[J]. 天然气工业,2015,35(2):106−109. DOI: 10.3787/j.issn.1000-0976.2015.02.017 ZHU Qingzhong,ZUO Yinqing,YANG Yanhui. How to solve the technical problems in the CBM development:A case study of a CMB gas reservoir in the southern Qinshui Basin[J]. Natural Gas Industry,2015,35(2):106−109. DOI: 10.3787/j.issn.1000-0976.2015.02.017
[40] 杨刚,孟尚志,李斌,等. 深部煤层气T型井钻井技术[J]. 煤炭科学技术,2018,46(6):189−194. YANG Gang,MENG Shangzhi,LI Bin,et al. Drilling technology of T–shaped well in deep coalbed methane[J]. Coal Science and Technology,2018,46(6):189−194.
[41] TAO Shu,PAN Zhejun,TANG Shuling,et al. Current status and geological conditions for the applicability of CBM drilling technologies in China:A review[J]. International Journal of Coal Geology,2019,202:95−108. DOI: 10.1016/j.coal.2018.11.020
[42] 温声明,周科,鹿倩. 中国煤层气发展战略探讨:以中石油煤层气有限责任公司为例[J]. 天然气工业,2019,39(5):129–136. WEN Shengming,ZHOU Ke,LU Qian. A discussion on CBM development strategies in China based upon a case study of PetroChina Coalbed Methane Co. ,Ltd[J]. Natural Gas Industry,2019,39(5):129–136.
[43] 郑司建,桑树勋. 煤层气勘探开发研究进展与发展趋势[J]. 石油物探,2022,61(6):951−962. DOI: 10.3969/j.issn.1000-1441.2022.06.001 ZHENG Sijian,SANG Shuxun. Progress of research on coalbed methane exploration and development[J]. Geophysical Prospecting for Petroleum,2022,61(6):951−962. DOI: 10.3969/j.issn.1000-1441.2022.06.001
[44] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.
[45] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118. DOI: 10.7623/syxb202101010 ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118. DOI: 10.7623/syxb202101010
[46] 孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气,2021,33(4):120−128. SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas,2021,33(4):120−128.
[47] 郝春生,季长江. 基于径向井技术的煤储层高效增透工艺研究[J]. 煤炭科学技术,2016,44(5):39−42. HAO Chunsheng,JI Changjiang. Study on high efficient permeability improved technique of coal reservoir based on radial well technology[J]. Coal Science and Technology,2016,44(5):39−42.
[48] 田守嶒,黄中伟,李根生,等. 径向井复合脉动水力压裂煤层气储层解堵和增产室内实验[J]. 天然气工业,2018,38(9):88−94. DOI: 10.3787/j.issn.1000-0976.2018.09.012 TIAN Shouceng,HUANG Zhongwei,LI Gensheng,et al. Laboratory experiments on blockage removing and stimulation of CBM reservoirs by composite pulsating fracturing of radial horizontal wells[J]. Natural Gas Industry,2018,38(9):88−94. DOI: 10.3787/j.issn.1000-0976.2018.09.012
[49] 王天一,易新斌,卢海兵. 中国煤层气压裂技术应用现状及发展方向[C]//2016年煤层气学术研讨会论文集. 北海,2016:271–276. [50] 姚伟,薛占新,金国辉,等. 泵送桥塞分段压裂工艺在煤层气“二开半程固井”水平井中的应用[J]. 中国煤层气,2020,17(6):3−8. YAO Wei,XUE Zhanxin,JIN Guohui,et al. Application of pumping bridge plug staged fracturing technology in CBM horizontal well with second spud halfway cementing[J]. China Coalbed Methane,2020,17(6):3−8.
[51] 黄中伟,李志军,李根生,等. 煤层气水平井定向喷射防砂压裂技术及应用[J]. 煤炭学报,2022,47(7):2687−2697. HUANG Zhongwei,LI Zhijun,LI Gensheng,et al. Oriented and sand control hydra–jet fracturing in coalbed methane horizontal wells and field applications[J]. Journal of China Coal Society,2022,47(7):2687−2697.
[52] 张永成,郝海金,李兵,等. 煤层气水平井泵送桥塞射孔压裂技术应用研究[J]. 煤炭技术,2017,36(10):193−195. ZHANG Yongcheng,HAO Haijin,LI Bing,et al. Study on application of pumping bridge plug and clustering perforation in fracturing for coalbed methane horizontal well[J]. Coal Technology,2017,36(10):193−195.
[53] 袁亮,姜耀东,何学秋,等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(2):306−318. YUAN Liang,JIANG Yaodong,HE Xueqiu,et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society,2018,43(2):306−318.
[54] 张超林,王培仲,王恩元,等. 我国煤与瓦斯突出机理70年发展历程与展望[J]. 煤田地质与勘探,2023,51(2):59−94. DOI: 10.12363/issn.1001-1986.23.02.0054 ZHANG Chaolin,WANG Peizhong,WANG Enyuan,et al. Coal and gas outburst mechanism:Research progress and prospect in China over the past 70 years[J]. Coal Geology & Exploration,2023,51(2):59−94. DOI: 10.12363/issn.1001-1986.23.02.0054
[55] 于不凡. 谈煤和瓦斯突出机理[J]. 煤炭科学技术,1979,7(8):34–42 [56] 周世宁,何学秋. 煤和瓦斯突出机理的流变假说[J]. 中国矿业大学学报,1990,19(2):1−8. ZHOU Shining,HE Xueqiu. Rheological hypothesis of coal and methane outburst mechanism[J]. Journal of China University of Mining & Technology,1990,19(2):1−8.
[57] 章梦涛,徐曾和,潘一山,等. 冲击地压和突出的统一失稳理论[J]. 煤炭学报,1991,16(4):48−53. ZHANG Mengtao,XU Zenghe,PAN Yishan,et al. A united instability theory on coal (rock) burst and outburst[J]. Journal of China Coal Society,1991,16(4):48−53.
[58] 蒋承林,俞启香. 煤与瓦斯突出机理的球壳失稳假说[J]. 煤矿安全,1995,26(2):17–25 [59] 胡千庭,周世宁,周心权. 煤与瓦斯突出过程的力学作用机理[J]. 煤炭学报,2008,33(12):1368−1372. DOI: 10.3321/j.issn:0253-9993.2008.12.008 HU Qianting,ZHOU Shining,ZHOU Xinquan. Mechanical mechanism of coal and gas outburst process[J]. Journal of China Coal Society,2008,33(12):1368−1372. DOI: 10.3321/j.issn:0253-9993.2008.12.008
[60] 徐涛,郝天轩,唐春安,等. 含瓦斯煤岩突出过程数值模拟[J]. 中国安全科学学报,2005,15(1):108−110. DOI: 10.3969/j.issn.1003-3033.2005.01.025 XU Tao,HAO Tianxuan,TANG Chun’an,et al. Numerical simulation of outburst process of gas–coal and rock[J]. China Safety Science Journal,2005,15(1):108−110. DOI: 10.3969/j.issn.1003-3033.2005.01.025
[61] XUE Sheng,WANG Yucang,XIE Jun,et al. A coupled approach to simulate initiation of outbursts of coal and gas:Model development[J]. International Journal of Coal Geology,2011,86(2/3):222−230.
[62] 马念杰,赵希栋,赵志强,等. 掘进巷道蝶型煤与瓦斯突出机理猜想[J]. 矿业科学学报,2017,2(2):137−149. MA Nianjie,ZHAO Xidong,ZHAO Zhiqiang,et al. Conjecture about mechanism of butterfly–shape coal and gas outburst in excavation roadway[J]. Journal of Mining Science and Technology,2017,2(2):137−149.
[63] 蔡成功. 煤与瓦斯突出三维模拟实验研究[J]. 煤炭学报,2004,29(1):66−69. DOI: 10.3321/j.issn:0253-9993.2004.01.015 CAI Chenggong. Experimental study on 3–D simulation of coal and gas outbursts[J]. Journal of China Coal Society,2004,29(1):66−69. DOI: 10.3321/j.issn:0253-9993.2004.01.015
[64] 欧建春,王恩元,马国强,等. 煤与瓦斯突出过程煤体破裂演化规律[J]. 煤炭学报,2012,37(6):978−983. OU Jianchun,WANG Enyuan,MA Guoqiang,et al. Coal rupture evolution law of coal and gas outburst process[J]. Journal of China Coal Society,2012,37(6):978−983.
[65] ZHOU Aitao,WANG Kai,FENG Tianfei,et al. Effects of fast–desorbed gas on the propagation characteristics of outburst shock waves and gas flows in underground roadways[J]. Process Safety and Environmental Protection,2018,119:295−303. DOI: 10.1016/j.psep.2018.08.016
[66] 许江,周斌,彭守建,等. 基于热–流–固体系参数演变的煤与瓦斯突出能量演化[J]. 煤炭学报,2020,45(1):213−222. XU Jiang,ZHOU Bin,PENG Shoujian,et al. Evolution of outburst energy based on development of heat–flow–solids parameters[J]. Journal of China Coal Society,2020,45(1):213−222.
[67] 袁亮,王伟,王汉鹏,等. 巷道掘进揭煤诱导煤与瓦斯突出模拟试验系统[J]. 中国矿业大学学报,2020,49(2):205−214. YUAN Liang,WANG Wei,WANG Hanpeng,et al. A simulation system for coal and gas outburst induced by coal uncovering in roadway excavation[J]. Journal of China University of Mining & Technology,2020,49(2):205−214.
[68] 卢义玉,彭子烨,夏彬伟,等. 深部煤岩工程多功能物理模拟实验系统:煤与瓦斯突出模拟实验[J]. 煤炭学报,2020,45(增刊1):272−283. LU Yiyu,PENG Ziye,XIA Binwei,et al. Coal and gas outburst multi–functional physical model testing system of deep coal petrography engineering[J]. Journal of China Coal Society,2020,45(Sup.1):272−283.
[69] 李术才,李清川,王汉鹏,等. 大型真三维煤与瓦斯突出定量物理模拟试验系统研发[J]. 煤炭学报,2018,43(增刊1):121−129. LI Shucai,LI Qingchuan,WANG Hanpeng,et al. A large–scale three–dimensional coal and gas outburst quantitative physical modeling system[J]. Journal of China Coal Society,2018,43(Sup.1):121−129.
[70] COOK N G W. A note on rockbursts considered as a problem of stability[J]. Journal of the Southern African Institute of Mining and Metallurgy,1965,65(8):437−446.
[71] PETUKHOV I M,LINKOV A M. The theory of post–failure deformations and the problem of stability in rock mechanics[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1979,16(2):57−76.
[72] CALDER P N,ARCHIBALD J F,MADSEN D,et al. High frequency precursor analysis prior to a rock burst[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1989,26(3/4):A166.
[73] SINGH S P. Burst energy release index[J]. Rock Mechanics and Rock Engineering,1988,21(2):149−155. DOI: 10.1007/BF01043119
[74] 章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报,1987,6(3):197−204. ZHANG Mengtao. Instability theory and mathematical model for coal/rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering,1987,6(3):197−204.
[75] 张万斌,王淑坤,滕学军. 我国冲击地压研究与防治的进展[J]. 煤炭学报,1992,17(3):27−36. ZHANG Wanbin,WANG Shukun,TENG Xuejun. Progress of research for prevention of rockbursts in China[J]. Journal of China Coal Society,1992,17(3):27−36.
[76] 齐庆新. 层状煤岩体结构破坏的冲击矿压理论与实践研究[D]. 北京:煤炭科学研究总院,1996. QI Qingxin. Study on the theory and practice of rock burst led by structure failure of bedded coal–rock mass[D]. Beijing:China Coal Research Institute,1996.
[77] 齐庆新,史元伟,刘天泉. 冲击地压粘滑失稳机理的实验研究[J]. 煤炭学报,1997,22(2):144−148. QI Qingxin,SHI Yuanwei,LIU Tianquan. Mechanism of instability caused by viscous sliding in rock burst[J]. Journal of China Coal Society,1997,22(2):144−148.
[78] 窦林名,陆菜平,牟宗龙,等. 煤岩体的强度弱化减冲理论[J]. 河南理工大学学报(自然科学版),2005,24(3):169−175. DOU Linming,LU Caiping,MOU Zonglong,et al. The theory of intensity weakening for rockburst in coal mine[J]. Journal of Henan Polytechnic University (Natural Science),2005,24(3):169−175.
[79] 潘俊锋,宁宇,毛德兵,等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报,2012,31(3):586−596. PAN Junfeng,NING Yu,MAO Debing,et al. Theory of rockburst start–up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(3):586−596.
[80] 齐庆新,李晓璐,赵善坤. 煤矿冲击地压应力控制理论与实践[J]. 煤炭科学技术,2013,41(6):1−5. QI Qingxin,LI Xiaolu,ZHAO Shankun. Theory and practices on stress control of mine pressure bumping[J]. Coal Science and Technology,2013,41(6):1−5.
[81] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报,2018,43(8):2091−2098. PAN Yishan. Disturbance response instability theory of rockburst in coal mine[J]. Journal of China Coal Society,2018,43(8):2091−2098.
[82] 潘一山,宋义敏,刘军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报,2023,42(9):2081−2095. PAN Yishan,SONG Yimin,LIU Jun. Pattern,change and new situation of coal mine rockburst prevention and control in China[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(9):2081−2095.
[83] 佩图霍夫. 预防冲击地压的理论与实践[C]//第22届国际采矿安全会议论文集. 北京:煤炭工业出版社,1987. [84] 潘一山. 煤与瓦斯突出、冲击地压复合动力灾害一体化研究[J]. 煤炭学报,2016,41(1):105−112. PAN Yishan. Integrated study on compound dynamic disaster of coal–gas outburst and rockburst[J]. Journal of China Coal Society,2016,41(1):105−112.
[85] 李铁,蔡美峰,王金安,等. 深部开采冲击地压与瓦斯的相关性探讨[J]. 煤炭学报,2005,30(5):562−567. DOI: 10.3321/j.issn:0253-9993.2005.05.005 LI Tie,CAI Meifeng,WANG Jin’an,et al. Discussion on relativity between rockburst and gas in deep exploitation[J]. Journal of China Coal Society,2005,30(5):562−567. DOI: 10.3321/j.issn:0253-9993.2005.05.005
[86] 蓝航,潘俊锋,彭永伟. 煤岩动力灾害能量机理的数值模拟[J]. 煤炭学报,2010,35(增刊1):10−14. LAN Hang,PAN Junfeng,PENG Yongwei. Numerical simulation for energy mechanism of underground dynamic disaster[J]. Journal of China Coal Society,2010,35(Sup.1):10−14.
[87] 王振,尹光志,胡千庭,等. 高瓦斯煤层冲击地压与突出的诱发转化条件研究[J]. 采矿与安全工程学报,2010,27(4):572−575. DOI: 10.3969/j.issn.1673-3363.2010.04.024 WANG Zhen,YIN Guangzhi,HU Qianting,et al. Inducing and transforming conditions from rockburst to coal–gas outburst in a high gassy coal seam[J]. Journal of Mining & Safety Engineering,2010,27(4):572−575. DOI: 10.3969/j.issn.1673-3363.2010.04.024
[88] 王凯,杜锋. 煤岩瓦斯复合动力灾害机理研究进展与展望[J]. 安全,2022,43(1):1−10. WANG Kai,DU Feng. Research progress and prospect on coal–rock–gas compound dynamic disaster mechanism[J]. Safety & Security,2022,43(1):1−10.
[89] 胡世雄. 煤层内水射流层状卸压增透效应及应用研究[D]. 焦作:河南理工大学,2020. HU Shixiong. Study on stratiform pressure relief and permeability enhancement effect of water jet in coal seam and its application[D]. Jiaozuo:Henan Polytechnic University,2020.
[90] 刘晓,李勇,宣德全,等. 软煤夹层水射流层状卸压增透抽采瓦斯数值模拟及试验[J]. 煤田地质与勘探,2021,49(2):54−61. LIU Xiao,LI Yong,XUAN Dequan,et al. Numerical simulation and test of gas drainage with water jet layered pressure relief and permeability enhancement in soft coal seam[J]. Coal Geology & Exploration,2021,49(2):54−61.
[91] 高磊. 晋城矿区井上下联合瓦斯抽采工艺及现场应用[J]. 煤炭与化工,2023,46(6):100−104. GAO Lei. Combined gas extraction technology and field application in Jincheng mining area[J]. Coal and Chemical Industry,2023,46(6):100−104.
[92] 陈顶峰. 虚拟储层水力强化技术在软煤瓦斯抽采中的应用研究[J]. 河南科技,2020,39(11):98−100. DOI: 10.3969/j.issn.1003-5168.2020.11.038 CHEN Dingfeng. Application research of virtual reservoir hydraulic strengthening technology in soft coal gas extraction[J]. Journal of Henan Science and Technology,2020,39(11):98−100. DOI: 10.3969/j.issn.1003-5168.2020.11.038
[93] 党嘉鑫. 厚硬顶板上保护层开采煤岩体变形及卸压效果研究[D]. 淮南:安徽理工大学,2022. DANG Jiaxin. Research and analysis on the effect of deformation and pressure relief of mining rock mass by protective layer on thick hard roof[D]. Huainan:Anhui University of Science & Technology,2022.
[94] 程远平,俞启香,袁亮,等. 煤与远程卸压瓦斯安全高效共采试验研究[J]. 中国矿业大学学报,2004,33(2):132−136. CHENG Yuanping,YU Qixiang,YUAN Liang,et al. Experimental research of safe and high–efficient exploitation of coal and pressure relief gas in long distance[J]. Journal of China University of Mining and Technology,2004,33(2):132−136.
[95] 李红兰,朱宗伟. 渝南片区煤矿煤与瓦斯突出治理成效评判初探[C]//2021年重庆市矿山学会年会优秀论文集. 重庆,2021:245–250. [96] 郭庆焕. 浅析多煤层联合开采的瓦斯治理技术[J]. 能源与节能,2022(8):131−134. DOI: 10.3969/j.issn.2095-0802.2022.08.040 GUO Qinghuan. Gas control technology in multi–seam coal mining[J]. Energy and Energy Conservation,2022(8):131−134. DOI: 10.3969/j.issn.2095-0802.2022.08.040
[97] 蔡祥雷. 淮北矿业集团芦岭煤矿特厚强突出煤层瓦斯灾害综合治理技术[DB]. 2023. https://www.taodocs.com/p–964617720.html. [98] 谢生荣,杨波,张晴,等. 低透气性煤层顺层密集钻孔抽采及并管提压系统研究[J]. 矿业科学学报,2019,4(1):34−40. XIE Shengrong,YANG Bo,ZHANG Qing,et al. Research on lift pressure system with combined pipeline and intensive drill–hole gas drainage along the layer in low permeability coal seam[J]. Journal of Mining Science and Technology,2019,4(1):34−40.
[99] 林柏泉,张建国,翟成,等. 近距离保护层开采采场下行通风瓦斯涌出及分布规律[J]. 中国矿业大学学报,2008,37(1):24−29. DOI: 10.3321/j.issn:1000-1964.2008.01.006 LIN Baiquan,ZHANG Jianguo,ZHAI Cheng,et al. Gas emission and distribution law in the stope mining short range protection layer using downward ventilation[J]. Journal of China University of Mining & Technology,2008,37(1):24−29. DOI: 10.3321/j.issn:1000-1964.2008.01.006
[100] 张克斌. 碾沟煤业综采工作面瓦斯抽采技术研究与应用[J]. 煤矿现代化,2021,30(2):144−146. DOI: 10.3969/j.issn.1009-0797.2021.02.048 ZHANG Kebin. Research and application of gas drainage technology in fully mechanized coal face in Niangou coal industry[J]. Coal Mine Modernization,2021,30(2):144−146. DOI: 10.3969/j.issn.1009-0797.2021.02.048
[101] 苏现波,范渐,王然,等. 煤储层水力压裂裂缝内支撑剂运移控制因素实验研究[J]. 煤田地质与勘探,2023,51(6):62−73. SU Xianbo,FAN Jian,WANG Ran,et al. An experimental study on factors controlling the proppant transport in hydraulic fractures of coal reservoirs[J]. Coal Geology & Exploration,2023,51(6):62−73.
[102] 庞立宁,胡全宏,景巨栋,等. 深埋厚硬顶板工作面长水平孔定向水力压裂区域卸压技术[J]. 煤炭工程,2023,55(10):67−73. PANG Lining,HU Quanhong,JING Judong,et al. Regional pressure relief technology with directional hydraulic fracturing of deep buried thick hard roof working face[J]. Coal Engineering,2023,55(10):67−73.
[103] 白新华. 低渗富瓦斯煤层高压水射流辅助压裂增透机理及应用[D]. 徐州:中国矿业大学,2018. BAI Xinhua. Mechanism and application of high–pressure water jet assisted hydraulic fracturing enhancing permeability in low permeable and high gas coal seam[D]. Xuzhou:China University of Mining and Technology,2018.
[104] 王凯,李康楠,杜锋,等. 基于CNN的煤岩瓦斯复合动力灾害预测[J]. 矿业科学学报,2023,8(5):613−622. WANG Kai,LI Kangnan,DU Feng,et al. Prediction of coal–gas compound dynamic disaster based on convolutional neural network[J]. Journal of Mining Science and Technology,2023,8(5):613−622.
[105] 薛俊华,肖健,杜轩宏,等. 我国煤矿保护层开采卸压瓦斯抽采现状及发展趋势[J]. 煤田地质与勘探,2023,51(6):50−61. XUE Junhua,XIAO Jian,DU Xuanhong,et al. Current situation and development trend of pressure–relief gas extraction in the protective layer mining in coal mines in China[J]. Coal Geology & Exploration,2023,51(6):50−61.
[106] 方良才,夏抗生. 淮南矿区区域性瓦斯治理成套技术实践[J]. 煤炭科学技术,2009,37(2):56−58. FANG Liangcai,XIA Kangsheng. Practices on completed set technology of local gas control in Huainan coal mining area[J]. Coal Science and Technology,2009,37(2):56−58.
[107] 杨守付,张明杰. 单一低透煤层水力冲孔卸压增透技术研究与应用[J]. 能源与环保,2017,39(5):179−183. YANG Shoufu,ZHANG Mingjie. Research and application of hydraulic pressure relief and permeability increasing technology for single low permeability coal seam[J]. China Energy and Environmental Protection,2017,39(5):179−183.
[108] 胡泊. 穿层钻孔水力冲孔卸压增透技术研究[J]. 机械管理开发,2021,36(9):194−195. HU Po. Study on pressure expansion technology of the hydraulic punch[J]. Mechanical Management and Development,2021,36(9):194−195.
[109] 耿宁,刘旺军. 芦岭矿深部远距离下保护层开采数值模拟研究[J]. 科技与创新,2023(14):104–106 [110] 黄勇,姚邦华,袁本庆. 保护层开采卸压瓦斯运移规律及强化抽采技术研究[J]. 煤炭技术,2022,41(6):90−93. HUANG Yong,YAO Banghua,YUAN Benqing. Research on stress relief gas flow and enhanced drainage technology in protective layer mining[J]. Coal Technology,2022,41(6):90−93.
[111] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213. JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.
[112] 魏立科,姜德义,王翀,等. 煤矿冲击地压灾害风险监察智能分析系统关键技术架构[J]. 煤炭学报,2021,46(增刊1):63−73. WEI Like,JIANG Deyi,WANG Chong,et al. Key technological architecture of the intelligent monitoring–analysis system for coal mine rockburst risk supervision[J]. Journal of China Coal Society,2021,46(Sup.1):63−73.
[113] 王东杰,马小辉,吕大钊,等. 冲击地压煤矿断层构造预测预报新技术与应用[J]. 陕西煤炭,2021,40(增刊1):128−131. WANG Dongjie,MA Xiaohui,LYU Dazhao,et al. New technology and application of fault structure prediction in rock burst coal mine[J]. Shaanxi Coal,2021,40(Sup.1):128−131.
[114] 连晓阳. 23111工作面顶板预裂爆破技术参数设计与应用[J]. 江西煤炭科技,2022(4):97−99. LIAN Xiaoyang. Design and application of technical parameters of roof presplitting blasting in 23111 working face[J]. Jiangxi Coal Science & Technology,2022(4):97−99.
[115] 付海月. 煤矿冲击地压防治技术研究与应用[J]. 内蒙古煤炭经济,2023(11):145–147 [116] 常秋鹏,刘更庆,葛祥吉. 煤矿冲击地压防治技术讨论[J]. 当代化工研究,2023(17):96−98. CHANG Qiupeng,LIU Gengqing,GE Xiangji. Discussion on prevention and control technology of rock burst in coal mine[J]. Modern Chemical Research,2023(17):96−98.
[117] 王方田,李哲,张村,等. 高瓦斯煤层大直径钻孔卸压增透瓦斯渗流时空演化机理[J]. 煤炭科学技术,2024,52(增刊1):47−61. WANG Fangtian,LI Zhe,ZHANG Cun,et al. Temporal and spatial evolution mechanism of large–diameter borehole pressure relief and permeable gas seepage in high gas coal seam[J]. Coal Science and Technology,2024,52(Sup.1):47−61.
[118] 庞立宁,付书俊,苏波. 煤层大直径钻孔和顶板预裂孔防冲机理研究及应用[J]. 煤矿安全,2021,52(9):183−189. PANG Lining,FU Shujun,SU Bo. Research and application of anti rock burst mechanism of large diameter boreholes in coal seam and roof pre–splitting holes[J]. Safety in Coal Mines,2021,52(9):183−189.
[119] 潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. DOI: 10.3321/j.issn:1000-6915.2003.11.019 PAN Yishan,LI Zhonghua,ZHANG Mengtao. Distribution,type,mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851. DOI: 10.3321/j.issn:1000-6915.2003.11.019
[120] 吴学明,马小辉,吕大钊,等. 彬长矿区“井上下”立体防治冲击地压新模式[J]. 煤田地质与勘探,2023,51(3):19−26. DOI: 10.12363/issn.1001-1986.22.08.0640 WU Xueming,MA Xiaohui,LYU Dazhao,et al. A new model of surface and underground integrated three–dimensional prevention and control of rock burst in Binchang Mining Area[J]. Coal Geology & Exploration,2023,51(3):19−26. DOI: 10.12363/issn.1001-1986.22.08.0640
[121] 唐治. 自移式吸能防冲巷道支架研究[D]. 阜新:辽宁工程技术大学,2014. TANG Zhi. Study on self–moving energy absorption and anti–impact roadway support[D]. Fuxin:Liaoning Technical University,2014.
[122] 杨俊哲,王振荣,吕情绪,等. 坚硬顶板超前区域治理技术在神东布尔台煤矿的应用[J]. 煤田地质与勘探,2022,50(2):17−23. YANG Junzhe,WANG Zhenrong,LYU Qingxu,et al. Application of advanced regional treatment technology of hard roof in Buertai Coal Mine of Shendong Coal Group[J]. Coal Geology & Exploration,2022,50(2):17−23.
[123] 杨真,任建慧,张寒寒. 神东布尔台煤矿矿压监测及治理手段现状与展望[J]. 中国煤炭,2021,47(增刊1):158−165. YANG Zhen,REN Jianhui,ZHANG Hanhan. Present situation and prospect of mine pressure monitoring and control means in Shendong Buertai Coal Mine[J]. China Coal,2021,47(Sup.1):158−165.
[124] 庞立宁,刘毅涛,邸晟钧,等. 冲击地压矿井水射流联合水力压裂宽煤柱卸压技术研究[J]. 煤炭工程,2020,52(6):81−85. PANG Lining,LIU Yitao,DI Shengjun,et al. Stress relieving of wide coal pillar using hydraulic fracturing and water jet in rock burst mine[J]. Coal Engineering,2020,52(6):81−85.
[125] 朱斯陶,姜福兴,刘金海,等. 我国煤矿整体失稳型冲击地压类型、发生机理及防治[J]. 煤炭学报,2020,45(11):3667−3677. ZHU Sitao,JIANG Fuxing,LIU Jinhai,et al. Types,occurrence mechanism and prevention of overall instability induced rockbursts in China coal mines[J]. Journal of China Coal Society,2020,45(11):3667−3677.
[126] 刘军,张宪尚,张士岭. 煤层群上下保护层开采围岩应力时空演化规律及应用研究[J]. 中国安全生产科学技术,2023,19(6):66−73. LIU Jun,ZHANG Xianshang,ZHANG Shiling. Study on spatial and temporal evolution law of surrounding rock stress in mining of upper and lower protective layers of coal seams group and its application[J]. Journal of Safety Science and Technology,2023,19(6):66−73.
[127] 卢安良. 煤层群下行开采扰动作用及诱冲效应研究[D]. 徐州:中国矿业大学,2022. LU Anliang. Study on disturbance effect and induced rock burst effect of downward mining coal seams group[D]. Xuzhou:China University of Mining and Technology,2022.
[128] 张修峰,陈洋. 煤柱型冲击地压类型、发生机理与防治对策研究[J]. 煤炭科学技术,2023,51(10):1−11. DOI: 10.12438/cst.2022-1608 ZHANG Xiufeng,CHEN Yang. Research on the type and occurrence mechanism and prevention of coal pillar rockbursts[J]. Coal Science and Technology,2023,51(10):1−11. DOI: 10.12438/cst.2022-1608
[129] 齐庆新,潘一山,李海涛,等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报,2020,45(5):1567−1584. QI Qingxin,PAN Yishan,LI Haitao,et al. Theoretical basis and key technology of prevention and control of coal–rock dynamic disasters in deep coal mining[J]. Journal of China Coal Society,2020,45(5):1567−1584.
[130] 袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725. YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.
[131] 袁亮,王恩元,马衍坤,等. 我国煤岩动力灾害研究进展及面临的科技难题[J]. 煤炭学报,2023,48(5):1825−1845. YUAN Liang,WANG Enyuan,MA Yankun,et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society,2023,48(5):1825−1845.
[132] 康红普,冯彦军. 定向水力压裂工作面煤体应力监测及其演化规律[J]. 煤炭学报,2012,37(12):1953−1959. KANG Hongpu,FENG Yanjun. Monitoring of stress change in coal seam caused by directional hydraulic fracturing in working face with strong roof and its evolution[J]. Journal of China Coal Society,2012,37(12):1953−1959.
[133] 夏永学,潘俊锋,谢非,等. 井下超长水平孔分段压裂防冲机理及效果[J]. 煤炭学报,2022,47(增刊1):115−124. XIA Yongxue,PAN Junfeng,XIE Fei,et al. Mechanism and effect of rock burst prevention using overlength horizontal hole staged fracturing technology[J]. Journal of China Coal Society,2022,47(Sup.1):115−124.
[134] 赵善坤,张广辉,柴海涛,等. 深孔顶板定向水压致裂防冲机理及多参量效果检验[J]. 采矿与安全工程学报,2019,36(6):1247−1255. ZHAO Shankun,ZHANG Guanghui,CHAI Haitao,et al. Mechanism of rockburst prevention for directional hydraulic fracturing in deep–hole roof and effect test with multi–parameter[J]. Journal of Mining & Safety Engineering,2019,36(6):1247−1255.
-
期刊类型引用(2)
1. 蒋新军. 透射槽波在新疆屯宝煤矿多断层工作面的精细探测技术应用. 煤炭技术. 2025(03): 101-106 . 百度学术
2. 金明方,李度周,王冕,马合飞,仇念广. 不稳定煤层多场联合勘探综合解译技术研究与应用——以河南新义煤矿为例. 地质与勘探. 2024(05): 993-1001 . 百度学术
其他类型引用(3)