含构造煤组合体受载裂隙动态演化规律

赵鹏翔, 刘莹莹, 李树刚, 刘妍群, 刘云川, 王捞捞, 陆卫东

赵鹏翔,刘莹莹,李树刚,等. 含构造煤组合体受载裂隙动态演化规律[J]. 煤田地质与勘探,2025,53(3):167−176. DOI: 10.12363/issn.1001-1986.24.10.0616
引用本文: 赵鹏翔,刘莹莹,李树刚,等. 含构造煤组合体受载裂隙动态演化规律[J]. 煤田地质与勘探,2025,53(3):167−176. DOI: 10.12363/issn.1001-1986.24.10.0616
ZHAO Pengxiang,LIU Yingying,LI Shugang,et al. Dynamic evolutionary pattern of fractures in tectonically deformed coal-bearing assemblages during loading[J]. Coal Geology & Exploration,2025,53(3):167−176. DOI: 10.12363/issn.1001-1986.24.10.0616
Citation: ZHAO Pengxiang,LIU Yingying,LI Shugang,et al. Dynamic evolutionary pattern of fractures in tectonically deformed coal-bearing assemblages during loading[J]. Coal Geology & Exploration,2025,53(3):167−176. DOI: 10.12363/issn.1001-1986.24.10.0616

 

含构造煤组合体受载裂隙动态演化规律

基金项目: 国家重点研发计划专项项目(2023YFC3009004);陕西省重点研发项目(2024GX-YBXM-490);新疆维吾尔自治区重点研发任务专项项目(2022B01034-3);陕西省杰出青年科学基金项目(2023-JC-JQ-40);新疆煤炭资源绿色开采教育部重点实验室开放课题(KLXGY-KA2404);国家自然科学基金面上项目(52174205)
详细信息
    作者简介:

    赵鹏翔,1987年生,男,甘肃兰州人,博士,教授,博士生导师。E-mail:zhpxhs@sina.com

    通讯作者:

    刘莹莹,2000年生,女,陕西榆林人,硕士研究生。E-mail:2722954684@qq.com

  • 中图分类号: TD712

Dynamic evolutionary pattern of fractures in tectonically deformed coal-bearing assemblages during loading

  • 摘要:
    目的 

    构造煤裂隙发育对开采扰动下组合煤体动力灾害诱发具有重要影响作用,但影响规律尚不明晰。

    方法 

    利用NanoVoxel-3000岩土多尺度高分辨综合扫描分析系统,开展含构造煤组合体单轴压缩CT扫描实验,通过Avizo重构软件重构细观几何结构,获得内部三维裂隙可视化模型。

    结果和结论 

    结果表明:裂隙最先在构造煤中产生,裂隙扩展路径分别向上原生结构煤、下原生结构煤发育,径向、纵向裂隙数量总量分别达到7 354、1 901条;内部裂纹分支数目不断增大,界面破坏裂隙的倾向分布、倾角变化也越复杂,上界面裂隙散射角最终为86°、119°、124°、137°,下界面裂隙散射角为116°。受载过程中,试件整体呈组合破裂模式—倒“V”形+丛状裂隙,裂隙主要集中在构造煤中,占总裂隙的78.5%,裂隙体积和裂隙率呈现降低—缓慢上升—急剧上升—缓慢上升的发展规律。主裂隙长度由44.7 mm增长到99.4 mm,裂隙扩展速度呈现降低—上升—降低的发展规律。通过细观损伤力学模型、两参Weibull函数,构建含构造煤组合体试件裂隙扩展表征模型,建立组合体试件主裂隙形成路径判定流程,通过Matlab软件验证主裂隙路径形成判定的合理性,发现相对误差为1.54%~4.21%,验证了主裂隙路径形成判定的有效性,揭示受载作用下含构造煤组合体裂隙动态演化规律,为研究组合煤层开采扰动下煤岩动力灾害诱发因素提供理论依据。

    Abstract:
    Objective 

    The formation and evolution of fractures in tectonically deformed coals (TDCs) exert a significant influence on the occurrence of dynamic hazards to TDC-bearding combinations under mining disturbance. However, the influence patterns remain unclear.

    Methods 

    Using a NanoVoxel-3000 high-resolution inspection system for multiscale integrated geotechnical scanning and analysis, this study performed uniaxial compression and CT scanning experiments on TDC-bearing combination specimens. Moreover, this study reconstructed the mesoscopic geometric structures of the specimens using the Avizo software, obtaining three-dimensional visualization models of fractures inside the specimens.

    Results and Conclusions 

    During loading of a specimen studied, fractures were generated in the TDC first and then propagated toward the upper and lower coals with primary textures, with the numbers of radial and longitudinal fractures totaling up to 7354 and 1901, respectively. Concurrently, fissures inside the specimen increased continuously, accompanied by more complex dip directions and angles of interfacial fractures. The final scattering angles of fractures at the upper interface were 86 °, 119 °, 124 °, and 137 °, while that of fractures at the lower interface was 116 °. During loading, the specimen exhibited a composite fracturing pattern characterized by inverted V-shaped and clustered fractures. The fractures were primarily concentrated in the TDC, in which fractures represented 78.5% of the total. The fracture volume and ratio decreased initially, followed by a slow increase, a rapid increased, and a slow increase sequentially. The length of the dominant fracture rose from 44.7 mm to 99.4 mm. The fracture propagation rate displayed a trend of decreasing first, then increased, and decreased finally. Using the mesoscopic damage mechanics model and the two-parameter Weibull distribution, this study constructed a model for fracture propagation characterization of the TDC-bearing combination specimen and developed a flow chart for discriminating the formation path of the dominant fracture in the specimen during loading. The rationality of the discriminant process was verified using the Matlab software, yielding relative errors ranging from 1.54 % to 4.21 %. Finally, this study revealed the dynamic evolutionary patterns of fractures in the specimen during loading. This study provides a theoretical basis for investigating factors inducing dynamic hazards in coals under the mining disturbance of coal seam combinations.

  • 煤炭是重要的不可再生资源,随着矿区资源的不断开采,浅层煤炭资源逐渐面临枯竭。在进一步向更深煤层开采中,定向钻进技术因钻孔轨迹精确可控、钻孔轴线可调整等优点不仅用于煤炭及煤层气领域,还用于其他事关国家资源战略和国计民生工程[1-3]。基于钻探施工高质量发展和减轻钻孔工作人员劳动强度的理念,定向钻进装备轻量化设计与应用对钻探装备的发展有着重要意义。因此,钻探装备发展需求趋势对钻探装备的强度和性能等提出了更高的要求[4-5]

    低碳高强钢因其强度高、韧性好以及良好的焊接性能等优点比普通钢材在生产中更有优势。针对我国“碳达峰”“碳中和”的目标,采用高强钢能够降低钻探装备自重,可实现产品轻量化,节约能耗。故已在油气钻井装备、矿山和各类施工所需的钻机、钻具等结构件中开展应用[6-7]

    钻探装备中使用的低碳高强钢,通常使用淬火加高温回火的方式得到回火索氏体组织,从而获得较好的韧性与强度[8-10]。低碳高强钢在不同回火温度下其组织和力学性能确有差异,针对笔者所研究的这种低碳高强钢,目前已有的研究中多采用中温回火工艺[11]或回火后时间保温较长[12],缺少在钻探装备工程生产中通常使用的淬火加高温回火工艺研究。因此为保障低碳高强钢在矿井和油气装备等领域重要结构件服役中的安全性,笔者以矿井和油气装备领域使用的一种低碳高强钢为研究对象,开展热处理工艺试验,深入研究不同回火工艺参数对显微组织、拉伸性能和冲击性能。不仅为工程技术人员在低碳高强钢热处理工艺规范和方法选择方面提供科学依据和理论指导,也为低碳高强钢钻探装备的安全应用提供有力的理论支撑。

    试验材料选自某钢厂生产的低碳热轧制高强钢材,化学成分见表1。原材料供货状态为热轧态,其微观组织为铁素体+贝氏体+少量珠光体,金相组织如图1a所示。通过图1b可以看到,材料原始奥氏体晶粒比较细小。

    表  1  试验钢化学成分
    Table  1.  Chemical composition of the experimental steel
    不同成分质量分数/%
    CMnSiCrMoNiVNbFe
    ≤0.201.200.300.700.551.400.040.04Bal.
    下载: 导出CSV 
    | 显示表格
    图  1  低碳高强钢原材料显微组织
    Figure  1.  Microstructure of raw materials of low-carbon high-strength steel

    该钢的Ac3为852℃,Ac1温度为725℃。Ms相变温度为418℃[11],根据其相变临界冷却速度,本试验采用的调质热处理工艺,淬火温度为940℃,保温时间为1 h后水淬直至钢材温度降到室温。根据工程生产经验,回火温度分别为610、630、650℃,保温1 h后空冷至室温,随后进行显微组织与力学性能的对比。

    金相腐蚀剂为4%硝酸乙醇溶液,腐蚀后的试样通过MR3000倒置三目金相显微镜和Zeiss Sigma 300扫描电镜对其微观组织进行观察分析,解释回火温度对显微组织的影响规律。拉伸试样根据GB/T 228.1—2010《金属材料 拉伸试验第1部分:室温试验方法》制作,采用SANS SHT4000电子万能试验机进行拉伸试验,拉伸速度为1.2 mm/min。硬度测试采用1 000 g载荷且保压12 s。冲击试样尺寸为V型缺口的10 mm×10 mm×55 mm 夏比冲击试样,采用摆锤式冲击试验机进行试验。

    在不同回火温度下试样经扫描电镜检测后的微观组织形貌如图2所示。从图2a中可以看到,经过610℃回火后,原始组织中的奥氏体晶界依稀可见。回火后,其板条特征并未完全消失,在板条上弥散有大量细小的析出碳化物,这些碳化物的形状呈颗粒状和棒状,试样在此温度下的组织为回火马氏体+回火索氏体[12-13]。当回火温度增加至630℃后,原奥氏体边界消失,回火马氏体组织开始出现回复并变宽,板条特征消失[12-14],故图2b中的主要为回火索氏体。由图2c中可以得到,当回火温度进一步增加至650℃后,奥氏体晶界完全消失,显微组织发生再结晶,此时棒状与颗粒状的碳化物随着回火温度的升高,逐渐变短、变粗,最后成为近球状的碳化物分布在回火索氏体中[12-15]

    图  2  不同回火工艺SEM组织
    Figure  2.  SEM structure of different tempering processes

    图3为原材料在不同回火温度下的拉伸特性曲线,图4为母材在不同回火温度下的屈服强度变化曲线。从图3图4可以看出,经过淬火+高温回火工艺后材料的屈服强度与母材相比均有所提高。在回火温度为610℃时,抗拉强度从由母材的810 MPa可提升至1 060 MPa,提升了31%;屈服强度由750 MPa可提升至1 020 MPa,提高了36%,强度性能最佳。此后继续增加回火温度,抗拉强度和屈服强度逐渐下降。图5中的断面收缩率和断后伸长率均表现出相同的规律,即在回火温度为610℃时,材料的断面收缩率和断后伸长率最高,表现出较好的塑性性能。

    图  3  母材与不同回火温度下试样的拉伸特性曲线
    Figure  3.  Tensile characteristic curves at different tempering temperatures
    图  4  母材与不同回火工艺温度下试样的屈服强度
    Figure  4.  Yield strength of the base material and samples at different tempering temperatures
    图  5  母材与不同回火工艺温度下试样的断后伸长率和断面收缩率
    Figure  5.  The elongation and reduction of the base material and samples at different tempering temperatures

    这是因为一方面随着回火温度从610℃增加至650℃,热能为大量的位错提供能量,使其发生迁移,位错之间的相互作用力降低,出现位错合并消失,位错增殖能力降低,使位错对晶界的钉扎效果减弱,故而位错密度降低,试样的拉伸性能出现下降[12-13]。另一方面铁素体对碳的固溶度较低,当温度较低时,溶质原子和溶剂原子直径不同,在溶质原子周围形成了晶格畸变应力场,该应力场和位错产生交互作用,从而使屈服强度提高;反之,温度升高超过固溶度的碳将会以碳化物的形式析出,当温度升高时,碳化物从颗粒状逐渐球化,从而使屈服强度受到影响[13]

    拉伸断口形貌如图6所示。可以观察到在母材和调质后的试样拉伸断口中,均分布有大量韧窝,表明试样具有较好的塑性。图6a图6b中的韧窝比图6c图6d的韧窝更多,且韧窝分布更加均匀,特别是图6b中分布有大量的形状规则的韧窝。图6c图6d的断口除存在撕裂棱还有韧窝混杂在一起,韧窝呈抛物线状,在切应力的作用下沿拉伸方向拉长,为拉长韧窝。由此可见,在这种断裂方式下的接头断裂方式为混合型断裂,其断裂模式仍是以韧性断裂方式为主。韧窝的大小和深度决定于第二相粒子的大小和密度、基体材料的塑性变形能力和应变硬化指数。结合拉伸特性曲线进行分析,在母材和回火温度610℃的试样中,断裂方式为韧性断裂,当温度高于610℃时,断裂方式趋向于混合断裂。

    图  6  不同回火温度试样的拉伸断口形貌
    Figure  6.  Tensile fracture morphology of samples at different tempering temperatures

    图7为不同试样在常温下冲击结果。母材的冲击功最低,平均冲击功仅为28 J。随着回火温度的提高,冲击功也逐渐提升,当回火温度为610、630、650℃时,平均冲击功分别为65、91、114 J。因母材组织与铁素体+珠光体钢相比存在贝氏体,故其冲击功低。通过分析图8中冲击断口形貌,可以得到原材料的断口形貌(图8a)呈现河流状花样,其解理面清,为解理断裂形貌。图8b是试样在610℃回火时,室温下的冲击断口,为韧窝断口。该断口分布有大量规则的韧窝,符合韧性断裂的特征。随着回火温度的增加,断口逐渐出现撕裂棱和断裂带,这些断裂带中存在有一定数量细小的韧窝(图8c图8d)。但与图8a中的韧窝相对比,其韧窝较少、较浅。

    图  7  母材与不同回火工艺温度下试样的冲击功
    Figure  7.  Impact energy of the base material and samples at different tempering temperatures
    图  8  不同回火温度试样的冲击断口形貌
    Figure  8.  Impact fracture morphology of samples at different tempering temperatures

    当回火温度逐渐升高时,淬火后的马氏体组织开始发生回复与再结晶,基体逐渐软化,相比未经处理的原材料,其塑性得到提升,冲击吸收能量升高。当回火温度大于610℃后,部分回火马氏体组织开始发生回复,形成软化程度更高的回火索氏体,材料进一步变软,抵抗裂纹扩展的能力进一步得到提升,韧性冲击吸收能量增加[16-18]。因此,该高强钢在不同回火温度的拉伸性能与冲击性能的趋势不相同。

    使用维氏硬度计分别测量原材料和不同回火温度下组织的显微硬度,如图9所示。原材料的平均显微硬度为268 HV,610℃回火温度下平均显微硬度为332 HV,630℃回火温度下平均显微硬度为303 HV,650℃回火温度下平均显微硬度为280 HV。从图9可以看出,随着回火温度的增加,显微硬度逐渐下降,与试样的拉伸性能呈现相同趋势。这是因为,随着回火温度升高,位错开始滑移,并合并消失。马氏体逐渐分解,铁素体基体中合金元素固溶度降低,碳化物逐渐析出,形成回火索氏体组织,位错的消失,使其对晶界的“钉扎”阻碍作用减少,故显微硬度下降[17-18]。从而使硬度降低[17-18]

    图  9  母材与不同回火工艺温度下试样的显微硬度
    Figure  9.  Microhardness of the base material and samples at different tempering temperatures

    a. 试验钢610℃回火时,显微组织为回火马氏体+回火索氏体。当回火温度在630~650℃时,回火马氏体发生回复和再结晶,组织以回火索氏体为主。

    b. 在回火温度为610~650℃时,试验钢的屈服强度随回火温度的增加逐渐降低,最高可达1 020 MPa(回火温度610℃),与原材料相比提升36%。抗拉强度与显微硬度呈现相同规律。

    c. 回火之后的试样冲击功比原材料冲击功高,且随着回火温度的增加,冲击功也增加。650℃回火温度下的冲击功最高,平均冲击功可达100 J。

    d. 回火温度为610℃时,拉伸断口和冲击断口均展现出韧性断裂的特征;当回火温度高于610℃时,拉伸断口和冲击断口混合断裂模式。

    e. 通过调节可有效提升该低碳高强钢的抗拉强度和冲击功。为满足该低碳高强钢在工程生产中的应用,可后续对不同规格尺寸的低碳高强钢进行回火工艺研究,以满足其在工程生产中推广应用。

  • 图  1   含构造煤组合体试件及参数测定

    Fig.  1   A TDC-bearing combination specimen and its parameters measured

    图  2   NanoVoxel-3000岩土多尺度高分辨综合扫描分析系统

    Fig.  2   NanoVoxel-3000 high-resolution inspection system for multiscale integrated geotechnical scanning and analysis

    图  3   不同荷载下组合体试件径向切面裂隙

    Fig.  3   Fractures in radial sections of a TDC-bearing combination specimen under varying loads

    图  4   不同荷载下组合体试件纵向切面裂隙

    Fig.  4   Fractures in a longitudinal section of a TDC-bearing combination specimen under different loads

    图  5   试件加载破裂过程中内部裂隙空间分布特征

    Fig.  5   Spatial distributions of fractures within a TDC-bearing combination specimen during loading

    图  6   含构造煤组合体界面裂隙演化和损伤破坏形态

    Fig.  6   Fracture evolution at interfaces and the damage and failure morphologies of a TDC-bearing combination specimen during loading

    图  7   含构造煤组合体主裂隙演化过程

    Fig.  7   Evolutionary process of a dominant fracture in a TDC-bearing combination specimen during loading

    图  8   组合体试件主裂隙路径形成判定流程

    Fig.  8   Flow chart for determining the formation path of a dominant fracture in a TDC-bearing combination specimen during loading

    图  9   主裂隙形成的预测路径与实验值对比

    Fig.  9   Comparison of the predicted and experimental formation paths of dominant fractures

    表  1   试件加载破裂过程中裂隙结构特征参数

    Table  1   Characteristic parameters of fracture structures within a TDC-bearing combination specimen during loading

    CT扫描次数 荷载/MPa 裂隙数目N/个 裂隙率g/% 裂隙密度/(条·cm−1) 裂隙面积S/mm2 裂隙体积V/mm3
    1 0 194 0.37 0.3458712 597.37 33.04
    2 4 218 0.59 0.3677175 631.93 33.96
    3 6 447 0.63 0.3926475 1 304.37 69.54
    4 8 743 1.25 0.7790625 2 166.08 115.48
    5 10 1170 1.97 1.6079850 3 409.68 181.78
    6 12 1901 2.58 2.8420200 5 542.18 295.47
    7 14 3441 5.79 3.6086175 10 029.08 534.68
    8 16 7354 6.11 3.8080575 21 430.44 1142.52
    下载: 导出CSV

    表  2   试件主裂隙路径形成判定预测误差

    Table  2   Prediction errors in determining the formation paths of dominant fractures in TDC-bearing combination specimens

    试验次数123
    相对误差/%4.212.681.54
    下载: 导出CSV
  • [1] 程远平,雷杨. 构造煤和煤与瓦斯突出关系的研究[J]. 煤炭学报,2021,46(1):180−198.

    CHENG Yuanping,LEI Yang. Causality between tectonic coal and coal and gas outbursts[J]. Journal of China Coal Society,2021,46(1):180−198.

    [2] 张超林,王培仲,王恩元,等. 我国煤与瓦斯突出机理70年发展历程与展望[J]. 煤田地质与勘探,2023,51(2):59−94. DOI: 10.12363/issn.1001-1986.23.02.0054

    ZHANG Chaolin,WANG Peizhong,WANG Enyuan,et al. Coal and gas outburst mechanism:Research progress and prospect in China over the past 70 years[J]. Coal Geology & Exploration,2023,51(2):59−94. DOI: 10.12363/issn.1001-1986.23.02.0054

    [3] 翟新献,赵晓凡,钱红亮,等. 三维动静载荷作用下组合煤岩样动态力学特性及本构关系[J]. 采矿与安全工程学报,2024,41(5):1011−1024.

    ZHAI Xinxian,ZHAO Xiaofan,QIAN Hongliang,et al. Dynamic mechanical properties and constitutive relationship of coal–rock combined specimens under 3D coupled dynamic and static loads[J]. Journal of Mining & Safety Engineering,2024,41(5):1011−1024.

    [4] 谢和平,高峰,鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015,34(11):2161−2178.

    XIE Heping,GAO Feng,JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2161−2178.

    [5]

    CHENG Yuanping,PAN Zhejun. Reservoir properties of Chinese tectonic coal:A review[J]. Fuel,2020,260:116350. DOI: 10.1016/j.fuel.2019.116350

    [6]

    ZHANG Erhui,DONG Xukai,ZHOU Baokun,et al. Experimental study on prediction of gas pressure variation during coal and gas outburst[J]. International Journal of Oil,Gas and Coal Technology,2025,37(1):102−124. DOI: 10.1504/IJOGCT.2025.143014

    [7]

    JIN Yongfei,TONG Xin,ZHENG Xuezhao,et al. Risk assessment of coal and gas outbursts driven by the theory of three types of hazards coupled with 80 accident cases[J]. Safety Science,2025,184:106771. DOI: 10.1016/j.ssci.2024.106771

    [8] 郑建伟,张修峰,鞠文君,等. 层面位置对煤岩组合体动态破坏特性影响规律研究[J]. 煤田地质与勘探,2024,52(10):97−105. DOI: 10.12363/issn.1001-1986.24.04.0253

    ZHENG Jianwei,ZHANG Xiufeng,JU Wenjun,et al. Influencing analysis of bedding plane location on the dynamic failure characteristics of coal–rock combinations[J]. Coal Geology & Exploration,2024,52(10):97−105. DOI: 10.12363/issn.1001-1986.24.04.0253

    [9] 郑建伟,王书文,李海涛,等. 层面数量对煤岩组合体抗压特性影响的实验研究[J]. 煤田地质与勘探,2023,51(5):11−22. DOI: 10.12363/issn.1001-1986.22.10.0787

    ZHENG Jianwei,WANG Shuwen,LI Haitao,et al. Experimental study on compressive strength characteristics of coal–rock combinations influenced by number of bedding surfaces[J]. Coal Geology & Exploration,2023,51(5):11−22. DOI: 10.12363/issn.1001-1986.22.10.0787

    [10] 余伟健,潘豹,李可,等. 岩–煤–岩组合体力学特性及裂隙演化规律[J]. 煤炭学报,2022,47(3):1155−1167.

    YU Weijian,PAN Bao,LI Ke,et al. Mechanical properties and fracture evolution law of rock–coal–rock combination[J]. Journal of China Coal Society,2022,47(3):1155−1167.

    [11] 卢守青,刘永富,孙建中,等. 初始应力状态及路径对含瓦斯软硬组合煤体失稳的影响[J]. 中国矿业大学学报,2024,53(4):751−762.

    LU Shouqing,LIU Yongfu,SUN Jianzhong,et al. Influence of initial stress state and stress path on the instability of combination formed by intact coal and tectonic coal containing gas[J]. Journal of China University of Mining & Technology,2024,53(4):751−762.

    [12] 朱传奇,谢广祥,王磊. 基于CT扫描的煤体裂隙演化与破坏状态表征[J]. 中国矿业大学学报,2024,53(1):93−105.

    ZHU Chuanqi,XIE Guangxiang,WANG Lei. Evolution of fracture and failure state characterization of coal based on CT scanning[J]. Journal of China University of Mining & Technology,2024,53(1):93−105.

    [13] 朱传奇,王磊,陈礼鹏,等. 单轴压缩下松软煤体波速演化与裂隙分布特征[J]. 煤炭科学技术,2024,52(4):288−301. DOI: 10.12438/cst.2023-1388

    ZHU Chuanqi,WANG Lei,CHEN Lipeng,et al. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. Coal Science and Technology,2024,52(4):288−301. DOI: 10.12438/cst.2023-1388

    [14] 朱传奇,王磊,刘怀谦,等. 不同应变率下松软煤体动态压缩力学特征试验研究[J/OL]. 煤炭科学技术,2024:1–11 [2025-02-18]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240408.1520.006.html.

    ZHU Chuanqi,WANG Lei,LIU Huaiqian,et al. Experimental study on dynamic compression mechanical properties of soft coal under different strain rates[J/OL]. Coal Science and Technology,2024:1–11 [2025-02-18]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240408.1520.006.html.

    [15] 杨科,郑诗章,刘文杰,等. 循环冲击荷载作用下煤岩组合体力学响应和能量耗散特征研究[J]. 振动与冲击,2024,43(20):150−161.

    YANG Ke,ZHENG Shizhang,LIU Wenjie,et al. A study on the mechanical response and energy dissipation characteristics of coal–rock composite under cyclical impact loads[J]. Journal of Vibration and Shock,2024,43(20):150−161.

    [16] 李春元. 深部原生煤岩组合体三轴压缩破裂特征与失稳模式[J]. 煤田地质与勘探,2024,52(8):111−123. DOI: 10.12363/issn.1001-1986.24.01.0013

    LI Chunyuan. Fracturing characteristics and instability modes of deep primary coal-rock combinations under triaxial compression[J]. Coal Geology & Exploration,2024,52(8):111−123. DOI: 10.12363/issn.1001-1986.24.01.0013

    [17]

    ZHOU Hongwei,ZHONG Jiangcheng,REN Weiguang,et al. Characterization of pore–fracture networks and their evolution at various measurement scales in coal samples using X–ray μCT and a fractal method[J]. International Journal of Coal Geology,2018,189:35−49. DOI: 10.1016/j.coal.2018.02.007

    [18]

    LI Yingying,CUI Hongqing,ZHANG Ping,et al. Three–dimensional visualization and quantitative characterization of coal fracture dynamic evolution under uniaxial and triaxial compression based on μCT scanning[J]. Fuel,2020,262:116568. DOI: 10.1016/j.fuel.2019.116568

    [19]

    YU Yanbin,QIU Zhaoxu,CHENG Weimin,et al. Fracture and porosity evolution of coal under uniaxial compression:An in–situ X–ray tomography study[J]. Geomechanics for Energy and the Environment,2023,36:100499. DOI: 10.1016/j.gete.2023.100499

    [20] 王登科,张平,魏建平,等. CT可视化的受载煤体三维裂隙结构动态演化试验研究[J]. 煤炭学报,2019,44(增刊2):574−584.

    WANG Dengke,ZHANG Ping,WEI Jianping,et al. Research on dynamic evolution of 3D fracture structure of loaded coal body based on CT visualization[J]. Journal of China Coal Society,2019,44(Sup.2):574−584.

    [21]

    WANG Dengke,ZENG Fanchao,WEI Jianping,et al. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of Petroleum Science and Engineering,2021,196:108051. DOI: 10.1016/j.petrol.2020.108051

    [22] 王登科,曾凡超,王建国,等. 显微工业CT的受载煤样裂隙动态演化特征与分形规律研究[J]. 岩石力学与工程学报,2020,39(6):1165−1174.

    WANG Dengke,ZENG Fanchao,WANG Jianguo,et al. Dynamic evolution characteristics and fractal law of loaded coal fractures by micro industrial CT[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1165−1174.

    [23] 王登科,田晓瑞,魏建平,等. 基于工业CT扫描和LBM方法的含瓦斯煤裂隙演化与渗流特性研究[J]. 采矿与安全工程学报,2022,39(2):387−395.

    WANG Dengke,TIAN Xiaorui,WEI Jianping,et al. Fracture evolution and permeability characteristics in gas–bearing coal based on industrial CT scanning and LBM method[J]. Journal of Mining & Safety Engineering,2022,39(2):387−395.

    [24] 王登科,张航,魏建平,等. 基于工业CT扫描的瓦斯压力影响下含瓦斯煤裂隙动态演化特征[J]. 煤炭学报,2021,46(11):3550−3564.

    WANG Dengke,ZHANG Hang,WEI Jianping,et al. Dynamic evolution characteristics of fractures in gas–bearing coal under the influence of gas pressure using industrial CT scanning technology[J]. Journal of China Coal Society,2021,46(11):3550−3564.

    [25] 杨琪,于岩斌,崔文亭,等. 单轴压缩下煤岩细观结构参数表征及演化规律[J]. 煤炭科学技术,2023,51(4):88−95.

    YANG Qi,YU Yanbin,CUI Wenting,et al. Fracture evolution of coal under uniaxial compression based on X–ray microscopic imaging[J]. Coal Science and Technology,2023,51(4):88−95.

    [26] 赵鹏翔,刘云川,韩霜莹,等. 构造煤组合体单轴加载下裂隙演化及分形规律[J]. 西安科技大学学报,2023,43(6):1035−1044.

    ZHAO Pengxiang,LIU Yunchuan,HAN Shuangying,et al. Fracture evolution and fractal law of tectonic coal combinations under uniaxial loading[J]. Journal of Xi’an University of Science and Technology,2023,43(6):1035−1044.

    [27] 石钰,马玉华,李树刚,等. 基于CT扫描技术的煤样三维重构及气体表观渗透率研究[J]. 矿业安全与环保,2024,51(1):27−35.

    SHI Yu,MA Yuhua,LI Shugang,et al. Three–dimensional reconstruction of coal based on CT scan technology and the study on gas apparent permeability[J]. Mining Safety & Environmental Protection,2024,51(1):27−35.

    [28] 肖鹏,高振,双海清,等. 不同加载速率下煤体裂隙演化特征分析[J]. 中国安全科学学报,2022,32(11):65−73.

    XIAO Peng,GAO Zhen,SHUANG Haiqing,et al. Analysis of coal fracture evolution characteristics under different loading rates[J]. China Safety Science Journal,2022,32(11):65−73.

    [29] 赵鹏翔,王晓玉,李树刚,等. 岩煤强度比对组合体破裂声发射及裂隙分形特性的影响[J]. 西安科技大学学报,2024,44(4):649−659.

    ZHAO Pengxiang,WANG Xiaoyu,LI Shugang,et al. Effect of rock–coal strength ratio on acoustic emission and fracture fractal characteristics of assemblage[J]. Journal of Xi’an University of Science and Technology,2024,44(4):649−659.

    [30] 和递,孔祥国,李树刚,等. 低速冲击载荷扰动煤体破裂动力学特征与能量耗散规律研究[J]. 煤炭科学技术,2024,52(11):273−284. DOI: 10.12438/cst.2023-1341

    HE Di,KONG Xiangguo,LI Shugang,et al. Study on dynamics characteristics and energy dissipation laws of coal fracture under low–speed impact load[J]. Coal Science and Technology,2024,52(11):273−284. DOI: 10.12438/cst.2023-1341

    [31] 邓绪彪,胡青峰,魏思民. 构造煤的成因–属性分类[J]. 工程地质学报,2014,22(5):1008−1014.

    DENG Xubiao,HU Qingfeng,WEI Simin. Genesis and property classification of tectonic coal[J]. Journal of Engineering Geology,2014,22(5):1008−1014.

    [32]

    LI Diyuan,HAN Zhenyu,ZHU Quanqi,et al. Stress wave propagation and dynamic behavior of red sandstone with single bonded planar joint at various angles[J]. International Journal of Rock Mechanics and Mining Sciences,2019,117:162−170. DOI: 10.1016/j.ijrmms.2019.03.011

    [33] 张志镇,滕业奇,周睿,等. 岩石非线性细观损伤–塑性耦合本构模型及其数值实现[J]. 岩石力学与工程学报,2024,43(6):1425−1442.

    ZHANG Zhizhen,TENG Yeqi,ZHOU Rui,et al. Nonlinear mesoscale damage–plasticity coupled constitutive model for rocks and its numerical implementation[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(6):1425−1442.

    [34]

    ZHANG Tianjun,JI Xiang,PANG Mingkun,et al. Investigation of the crack evolution characteristics of coal and rock bodies around boreholes during progressive damage based on stress threshold values[J]. Theoretical and Applied Fracture Mechanics,2023,125:103935. DOI: 10.1016/j.tafmec.2023.103935

    [35]

    DENG H,NEMAT–NASSER S. Microcrack interaction and shear fault failure[J]. International Journal of Damage Mechanics,1994,3(1):3−37. DOI: 10.1177/105678959400300101

图(9)  /  表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  8
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-08
  • 修回日期:  2025-02-16

目录

/

返回文章
返回