Application of five seismic attributes in natural fracture prediction for deep coalbed methane production along the eastern margin of the Ordos Basin
-
摘要:背景
天然裂缝既是深部煤层气游离气主要储集空间,也是油气运移的通道,同时在深部高压状态下天然裂缝可以提高地层的孔隙率和渗透率,对煤层渗透性有“放大”的效果,精细刻画其平面展布规律对深部煤层气开发至关重要。
目的和方法以鄂尔多斯盆地东缘大宁–吉县区块石炭系本溪组 8号煤为研究对象,应用“两宽一高”三维地震资料,通过OVT域处理,获得时间、空间(三维坐标)、偏移距(或炮检距)和方位角五维地震数据,开展叠前方位各向异性属性提取预测裂缝。
结果和结论建立了椭圆拟合与方位统计相结合的五维地震解释技术流程,揭示了研究区发育燕山期近 EW/NEE 向与喜马拉雅期近 SN/NNE 向的共轭裂缝系统。通过与成像测井、阵列声波测井及压裂施工曲线的多源数据验证,证实方位统计法在裂缝方向(符合率 89%)和发育程度(预测准确率 88.5%)预测方面具有更高可靠性。研究成果成功指导了水平井部署优化,为深部煤层气高效开发提供了重要技术支撑,相关方法可推广至其他深部煤岩含气盆地。
Abstract:BackgroundNatural fractures serve as both the primary storage space for free gas of deep coalbed methane (CBM) and pathways for hydrocarbon migration. Furthermore, these fractures can enhance the porosity and permeability of strata under the deep, high-pressure condition, significantly amplifying the permeability of coal seams. Therefore, the fine-scale characterization of the planar distribution of natural fractures is crucial to deep CBM production.
Objectives and MethodsThis study investigated the No.8 coal seam in the Carboniferous Benxi Formation within the Daning-Jixian block on the eastern margin of the Ordos Basin. Through offset vector tiles (OVT) domain processing of offshore 3D wide-azimuth, broadband, and high-density (WBH) seismic data, this study determined five-dimensional seismic data: time, space (3D coordinates), offset (or shot-to-geophone distance), and azimuth. Then, fracture prediction was conducted through a pre-stack analysis of the azimuthal anisotropy attributes.
Results and Conclusionsthis study developed a technical process for the five-dimensional seismic data-based interpretation that combined the methods of elliptical fitting and azimuthal statistics. The results reveal the presence of conjugate fracture systems in the study area: Yanshanian nearly EW/NEE- and Himalayan nearly SN/NNE-oriented fractures. The verification using multi-source data, including formation micro-imaging (FMI) logs, array acoustic logs, and fracturing curves, indicates that the azimuthal statistical method exhibited higher reliability in predicting fracture orientation (coincidence rate: 89 %) and developmental degree (prediction accuracy: 88.5 %). The results of this study have provided successful guidance for the optimization of horizontal well deployment, providing significant technical support for the efficient development of deep CBM. The relevant methodology can be widely applied to other basins bearing deep coal-bearing gas.
-
-
表 1 深部8号煤层地震与测井裂缝预测结果统计
Table 1 Statistics of the coincidence rates of fractures in the No.8 deep coal seam predicted using seismic and log data
表 2 深部8号煤层岩心宏观描述统计
Table 2 Statistics of the macroscopic descriptions of cores from the No.8 deep coal seam
井号 样品编号 样品埋深/m 样品长度/m 宏观描述 是否符合 D3-4 17 2199.10 ~ 2199.370.27 黑色炭质页岩,原生结构,可见镜煤条带,偶见裂缝 符合 18 2202.18 ~ 2202.480.30 黑色炭质页岩,原生结构,偶见镜煤条带,裂缝发育 19 2204.98 ~ 2205.220.24 黑色炭质页岩,原生结构,可见镜煤条带,偶见裂缝 20 2205.80 ~ 2206.090.29 黑色炭质页岩,原生结构相对破碎,偶见镜煤条带,裂缝发育 DP20 14 2273.89 ~ 2274.180.28 黑色半暗煤,块状构造,割理发育,填充方解石,参差状断口 符合 15 2274.34 ~ 2274.570.23 黑色半亮煤,块状构造,割理无填充,贝壳状断口 16 2274.86 ~ 2275.130.27 黑色半暗煤,块状构造,割理无填充,含镜质条带,贝壳状断口 17 2275.55 ~ 2275.830.28 黑色半亮煤,块状构造,无割理,贝壳状断口 18 2276.25 ~ 2276.550.30 黑色半亮煤,块状构造,无割理,含镜质条带,贝壳状断口 19 2276.90 ~ 2277.160.26 黑色半亮煤,块状构造,割理发育,填充方解石,含镜质条带贝壳状断口 20 2277.38 ~ 2277.630.25 黑色半亮煤,块状构造,割理发育,方解石填充 21 2277.63 ~ 2277.880.25 黑色半暗煤,块状构造,割理发育中等,含镜质条带贝壳状断口 22 2277.88 ~ 2278.150.27 黑色炭质泥岩夹煤,隔理不发育,光泽暗淡,有黄铁矿填充 23 2278.15 ~ 2278.400.25 黑色暗煤,块状构造,光泽暗淡,割理不发育 24 2278.15 ~ 2278.950.29 黑色半亮煤,块状构造,割理发育,沥青光泽,贝壳状断口 25 2279.04 ~ 2279.290.25 黑色半亮煤,块状构造,割理发育,沥青光泽,贝壳状断口 26 2279.44 ~ 2279.680.24 黑色半亮煤,块状构造,割理发育,贝壳状断口 27 2279.68 ~ 2279.950.27 黑色半暗煤,块状构造,割理非常发育,方解石填充 28 2280.82 ~ 2281.080.26 黑色半亮煤,块状构造,割理非常发育,方解石填充 29 2281.08 ~ 2281.350.27 黑色半亮煤,割理发育,方解石填充,含镜质条带,贝壳状断口 DP19 09 2115.81 ~ 2116.010.2 半亮煤,原生结构煤 符合 11 2117.62 ~ 2117.860.24 半暗煤,原生结构煤 14 2120.85 ~ 2121.120.27 半暗煤,原生结构煤 -
[1] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18. XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of “double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18.
[2] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76. SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.
[3] 陈刚,秦勇,李五忠,等. 鄂尔多斯盆地东部深层煤层气成藏地质条件分析[J]. 高校地质学报,2012,18(3):465−473. CHEN Gang,QIN Yong,LI Wuzhong,et al. Analysis of geological conditions of deep coalbed methane reservoiring in the eastern Ordos Basin[J]. Geological Journal of China Universities,2012,18(3):465−473.
[4] 徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215. XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.
[5] 朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55−60. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. On the scientific exploitation of high–rank CBM resources[J]. Natural Gas Industry,2020,40(1):55−60.
[6] 房大志,程泽虎,李佳欣. 渝东南地区超深层煤层气高效压裂技术及精细排采制度研究与实践:以NY1井为例[J]. 煤田地质与勘探,2022,50(5):50−56. DOI: 10.12363/issn.1001-1986.21.08.0437 FANG Dazhi,CHENG Zehu,LI Jiaxin. Efficient fracturing technology and fine drainage system of ultra–deep coalbed methane in southeast Chongqing:A case study of NY1 well[J]. Coal Geology & Exploration,2022,50(5):50−56. DOI: 10.12363/issn.1001-1986.21.08.0437
[7] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439. YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
[8] 杨秀春,毛建设,林文姬,等. 保德区块煤层气勘探历程与启示[J]. 新疆石油地质,2021,42(3):381−388. YANG Xiuchun,MAO Jianshe,LIN Wenji,et al. Exploration history and enlightenment of coalbed methane in Baode Block[J]. Xinjiang Petroleum Geology,2021,42(3):381−388.
[9] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42. DOI: 10.11935/j.issn.1673-1506.2022.04.003 XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42. DOI: 10.11935/j.issn.1673-1506.2022.04.003
[10] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130. DOI: 10.12363/issn.1001-1986.22.06.0503 XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technical difficulties and countermeasures for deep (layer) coalbed methane exploration and development in the eastern margin of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130. DOI: 10.12363/issn.1001-1986.22.06.0503
[11] 王军,李艳东,甘利灯. 基于蚂蚁体各向异性的裂缝表征方法[J]. 石油地球物理勘探,2013,48(5):763−769. WANG Jun,LI Yandong,GAN Lideng. Fracture characterization based on azimuthal anisotropy of ant–tracking attribute volumes[J]. Oil Geophysical Prospecting,2013,48(5):763−769.
[12] 马晓宇,王军,李勇根,等. 基于蚂蚁追踪的叠前裂缝预测技术[J]. 石油地球物理勘探,2014,49(6):1199−1203. MA Xiaoyu,WANG Jun,LI Yonggen,et al. Prestack fracture prediction based on ant tracking[J]. Oil Geophysical Prospecting,2014,49(6):1199−1203.
[13] SUN D S,LING Y,BAI Y,et al. Application of spectral decomposition and ant tracking to fractured carbonate reservoirs[C]//73rd EAGE Conference and Exhibition incorporating SPE EUROPEC 2011. Vienna:EAGE Publications BV,2011.
[14] 史刘秀,王静波,张如伟,等. 复值相干模量蚂蚁体技术[J]. 断块油气田,2015,22(5):545−549. SHI Liuxiu,WANG Jingbo,ZHANG Ruwei,et al. Ant tracking technology based on complex–valued coherence[J]. Fault–Block Oil & Gas Field,2015,22(5):545−549.
[15] 任朝发,杨重洋,赵海波,等. 叠前叠后裂缝预测在致密油勘探中的应用[C]//中国石油学会2015年物探技术研讨会论文集. 湖北宜昌,2015:746–750. [16] 史今雄,赵向原,潘仁芳,等. 川中地区震旦系灯影组碳酸盐岩天然裂缝特征及其对气井产能影响[J]. 石油与天然气地质,2023,44(2):393−405. SHI Jinxiong,ZHAO Xiangyuan,PAN Renfang,et al. Characteristics of natural fractures in carbonate reservoirs and their impacts on well productivity in the Sinian Dengying Formation,central Sichuan Basin[J]. Oil & Gas Geology,2023,44(2):393−405.
[17] 侯莲. 碳酸盐岩储层裂缝预测方法试验研究[D]. 北京:中国石油大学(北京),2018. HOU Lian. A fracture characterization study for a carbonate reservoir[D]. Beijing:China University of Petroleum-Beijing,2018.
[18] 杨秀春,屈争辉,姜波,等. 山西大宁–吉县地区中新生代构造特征及其演化[J]. 中国煤炭地质,2013,25(5):1−6. YANG Xiuchun,QU Zhenghui,JIANG Bo,et al. Mesozoic–Cenozoic structural features and their evolution in Daning–Jixian area,Shanxi[J]. Coal Geology of China,2013,25(5):1−6.
[19] MACBETH C,LI Xiangyang. AVD;An emerging new marine technology for reservoir characterization;Acquisition and application[J]. Geophysics,1999,64(4):1153−1159. DOI: 10.1190/1.1444622
[20] 曲寿利,季玉新,王鑫,等. 全方位P波属性裂缝检测方法[J]. 石油地球物理勘探,2001,36(4):390−397. QU Shouli,JI Yuxin,WANG Xin,et al. Seismic method for using full–azimuth P–wave attribution to detect fracture[J]. Oil Geophysical Prospecting,2001,36(4):390−397.
[21] MARTINS J L. Elastic impedance in weakly anisotropic media[J]. Geophysics,2006,71(3):D73−D83. DOI: 10.1190/1.2195448
[22] 陈天胜,魏修成,刘洋. 一种新的各向异性弹性阻抗近似公式[J]. 石油物探,2006,45(6):563−569. CHEN Tiansheng,WEI Xiucheng,LIU Yang. New approximation formula for calculation of elastic impedance in anisotropic media[J]. Geophysical Prospecting for Petroleum,2006,45(6):563−569.
[23] 李慧琼,张盟勃,蒲仁海,等. 黄257井区叠前纵波方位各向异性裂缝分布预测[J]. 石油地球物理勘探,2017,52(2):350−359. LI Huiqiong,ZHANG Mengbo,PU Renhai,et al. Late Triassic fracture detection with seismic azimuth anisotropics in Huang 257 survey,Ordos Basin[J]. Oil Geophysical Prospecting,2017,52(2):350−359.
[24] 赵才顺,万欢,张昊,等. 纵波方位各向异性正演模拟及叠前裂缝检测应用研究:以鄂尔多斯盆地致密砂岩气区块为例[J]. 地球物理学进展,2019,34(1):257−265. DOI: 10.6038/pg2019BB0472 ZHAO Caishun,WAN Huan,ZHANG Hao,et al. Research application of the P–wave anisotropy forward modeling and pre–stack fracture detection:Take the tight sandstone gas block in Ordos Basin as an example[J]. Progress in Geophysics,2019,34(1):257−265. DOI: 10.6038/pg2019BB0472
[25] 魏欣伟,薛姣,罗霞. 基于OVT域地震数据的叠前AVOA裂缝密度反演[J]. 石油物探,2021,60(5):816−825. WEI Xinwei,XUE Jiao,LUO Xia. Fracture density estimation using an amplitude–versus–offset–and–azimuth inversion based on prestack seismic data in the offset vector tile domain[J]. Geophysical Prospecting for Petroleum,2021,60(5):816−825.
[26] 苑书金,于常青. 各向异性介质中的弹性阻抗及其反演[J]. 地球物理学进展,2006,21(2):520−523. DOI: 10.3969/j.issn.1004-2903.2006.02.028 YUAN Shujin,YU Changqing. Elastic impedance and seismic inversion in anisotropic media[J]. Progress in Geophysics,2006,21(2):520−523. DOI: 10.3969/j.issn.1004-2903.2006.02.028
[27] 李爱山,印兴耀,张繁昌,等. VTI介质中的弹性阻抗与参数提取[J]. 地球物理学进展,2008,23(6):1878−1885. LI Aishan,YIN Xingyao,ZHANG Fanchang,et al. Elastic impedance in VTI media and parameter extraction[J]. Progress in Geophysics,2008,23(6):1878−1885.
[28] 陈怀震,印兴耀,张金强,等. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究[J]. 地球物理学报,2014,57(10):3431−3441. DOI: 10.6038/cjg20141029 CHEN Huaizhen,YIN Xingyao,ZHANG Jinqiang,et al. Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance[J]. Chinese Journal of Geophysics,2014,57(10):3431−3441. DOI: 10.6038/cjg20141029
[29] 罗辑,吴国忱,宗兆云,等. 基于方位弹性阻抗反演的裂缝型储层流体检测方法[J]. 石油地球物理勘探,2015,50(6):1154−1165. LUO Ji,WU Guochen,ZONG Zhaoyun,et al. Fluid identification in fractured reservoirs based on azimuthal elastic impedance inversion[J]. Oil Geophysical Prospecting,2015,50(6):1154−1165.
[30] 吴国忱,赵小龙,罗辑,等. 基于扰动弹性阻抗的裂缝参数反演方法[J]. 石油地球物理勘探,2017,52(2):340−349. WU Guochen,ZHAO Xiaolong,LUO Ji,et al. Fracture parameter inversion based on perturbation elastic impedance[J]. Oil Geophysical Prospecting,2017,52(2):340−349.
[31] 韩必武,李栋青,范秦军. 正交多极子阵列声波测井在煤田勘探中的应用:以淮南顾桥煤矿补7井区为例[J]. 科技创新与应用,2021,11(2):20−25. [32] SENA A G. Seismic traveltime equations for azimuthally anisotropic and isotropic media:Estimation of interval elastic properties[J]. Geophysics,1991,56(12):2090−2101. DOI: 10.1190/1.1443021
[33] WINKLER K W. Laboratory observations of azimuthal velocity variations caused by borehole stress concentrations[C]//SEG Technical Program Expanded Abstracts 1994. Society of Exploration Geophysicists,1994:1133–1135.
[34] SENGUPTA M K. Sensitivity analysis of amplitude versus offset (AVO) method[C]//SEG Technical Program Expanded Abstracts 1987. Society of Exploration Geophysicists,1987:621–623.
[35] 段文胜,李飞,王彦春,等. 面向宽方位地震处理的炮检距向量片技术[J]. 石油地球物理勘探,2013,48(2):206−213. DUAN Wensheng,LI Fei,WANG Yanchun,et al. Offset vector tile for wide–azimuth seismic processing[J]. Oil Geophysical Prospecting,2013,48(2):206−213.
[36] 段文胜,张智,李飞. 宽方位地震资料OVT处理技术[M]. 北京:东方出版社,2016. [37] 郝守玲,赵群. 裂缝介质对P波方位各向异性特征的影响:物理模型研究[J]. 勘探地球物理进展,2004,27(3):189−194. HAO Shouling,ZHAO Qun. The effect of fractured medium on P wave azimuthal anisotropy:A physical model study[J]. Progress in Exploration Geophysics,2004,27(3):189−194.
[38] 詹仕凡,陈茂山,李磊,等. OVT域宽方位叠前地震属性分析方法[J]. 石油地球物理勘探,2015,50(5):956−966. ZHAN Shifan,CHEN Maoshan,LI Lei,et al. OVT–domain wide–azimuth prestack seismic attribute analysis[J]. Oil Geophysical Prospecting,2015,50(5):956−966.
[39] 周路,周江辉,代瑞雪,等. OVT域五维地震属性在双鱼石地区栖霞组裂缝预测中的应用[J]. 地学前缘,2023,30(1):213−228. ZHOU Lu,ZHOU Jianghui,DAI Ruixue,et al. Application of OVT–domain 5–dimensional seismic attributes in fracture prediction in the Qixia Formation of the Shuangyushi area[J]. Earth Science Frontiers,2023,30(1):213−228.
[40] 张小东,胡修凤,杨延辉,等. 沁南煤层气井压裂施工曲线分析[J]. 河南理工大学学报(自然科学版),2017,36(3):21−27. ZHANG Xiaodong,HU Xiufeng,YANG Yanhui,et al. Analysis of hydraulic fracturing operation curves of CBM wells in southern Qinshui Basin[J]. Journal of Henan Polytechnic University(Natural Science),2017,36(3):21−27.
[41] 杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41. DOI: 10.12363/issn.1001-1986.21.12.0823 YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41. DOI: 10.12363/issn.1001-1986.21.12.0823