大柳塔煤矿地下水库水化学特征及来源解析

Hydrochemical characteristics and component sources of water in underground reservoirs in the Daliuta coal mine

  • 摘要:
    目的 煤矿地下水库具有储存和净化矿井水的功能,深入理解水库水体的水化学特征及形成机制是大规模开发矿井水处理技术的重要前提。
    方法 以神东大柳塔煤矿地下水库为对象,通过对水库进出水水样采集测试与分析,结合离子比值法、多元统计分析(包括相关性分析和主成分分析)和正矩阵分解模型等方法,分析了水库水体的水文地球化学特征及组分来源。
    结果和结论 结果表明:(1) 与水库进水水质相比,出水处水体的固体悬浮物(SS)、电导率(EC)、溶解性总固体(TDS)、Fe3+、Mn2+等重金属指标明显降低,且沿着水流方向上Na+、Cl含量逐渐增加,Ca2+、Mg2+含量逐渐降低,水化学类型由进库的Cl·SO4-Ca型向出库的Cl·SO4-Na·Ca型和Cl·SO4-Na型转变。(2) 水库内垮落岩石主要为泥岩和砂岩,其矿物成分包括石英、正长石、钠长石、伊利石、高岭石、绿泥石、石膏和黄铁矿等,发生的水文地球化学作用主要包括矿物溶解(即岩盐、硅酸盐和石膏溶解)、阳离子交换、吸附和沉淀以及混合作用。(3) 水库水体的水化学组分主要受矿物溶解和阳离子交换作用(F1)、离子的吸附和沉淀作用(F2)、不同水源的混合作用(F3) 3种因子控制,三者对水库水体离子质量浓度的平均贡献率分别为57.2%、22.0%和20.8%。(4) F1对Na+、K+、Ca2+、Cl、\mathrmSO_4^2- 和\mathrmHCO_3^- 质量浓度的贡献率依次为86.9%、78.8%、79.2%、79.7%、74.0%、74.8%;F2对Fe3+和Mn2+质量浓度的贡献率分别为83.9%和70.3%;F3对Mg2+质量浓度的贡献率为84.9%。研究成果为深入理解煤矿地下水库水质净化机理提供了理论支持,并为优化矿井水处理技术和实现水资源可持续利用提供了技术指导。

     

    Abstract:
    Objective Underground reservoirs in coal mines are capable of storing and purifying mine water. A deep understanding of the hydrochemical characteristics and formation mechanisms of water in underground reservoirs is identified as an important prerequisite for large-scale development of technologies for mine water treatment.
    Methods This study investigated the underground reservoirs in the Daliuta coal mine within the Shendong area by testing and analyzing their influent and effluent water samples. Using methods such as the ion ratio method, multivariate statistical analyses (e.g., correlation analysis and principal component analysis (PCA)), and the positive matrix factorization (PMF) model, this study delved into the hydrogeochemical characteristics and component sources of water in the underground reservoirs.
    Results and Conclusions  The results of this study indicate that compared to the influent water of the underground reservoirs, the effluent water exhibits significantly reduced heavy metal indicators including suspended solids (SS), electrical conductivity (EC), total dissolved solids (TDS), Fe3+, and Mn2+. Furthermore, the Na+ and Cl concentrations progressively increase while the Ca2+ and Mg2+ concentrations gradually decrease along the water flow direction. The hydrochemical type shifts from the Cl·SO4−Ca type of the influent water to the Cl·SO4−Na·Ca and Cl·SO4−Na types of the effluent water. The rocks collapsing in the underground reservoirs consist primarily of mudstones and sandstones. Their minerals comprise quartz, orthoclase, albite, illite, kaolinite, chlorite, gypsum, and pyrite. The principal hydrogeochemical processes the rocks experience include mineral dissolution (i.e., dissolution of halite, silicate, and gypsum), cation exchange, adsorption, precipitation, and mixing. The hydrochemical composition of water in the underground reservoirs is predominantly controlled by three factors: mineral dissolution and cation exchange (F1), the adsorption and precipitation of ions (F2), and the mixing of different water sources (F3), which contribute to 57.2%, 22.0%, and 20.8%, respectively, on average to the mass concentrations of ions in water bodies in the underground reservoirs. Specifically, F1 contributes 86.9%, 78.8%, 79.2%, 79.7%, 74.0%, and 74.8%, respectively, to the mass concentrations of Na+, K+, Ca2+, Cl, \mathrmSO_4^2- , and \mathrmHCO_3^- ; F2 contributes 83.9% and 70.3%, respectively, to the mass concentrations of Fe3+ and Mn2+, and F3 contributes 84.9% to the mass concentration of Mg2+. The results of this study provide theoretical support for a deep understanding of the water purification mechanisms for underground reservoirs in the coal mine. Additionally, these results offer technical guidance for optimizing the technologies for mine water treatment and achieving sustainable utilization of water resources.

     

/

返回文章
返回