随掘地震实时采集数据同步时差校正方法

金丹

金丹. 随掘地震实时采集数据同步时差校正方法[J]. 煤田地质与勘探,2025,53(3):190−196. DOI: 10.12363/issn.1001-1986.24.08.0508
引用本文: 金丹. 随掘地震实时采集数据同步时差校正方法[J]. 煤田地质与勘探,2025,53(3):190−196. DOI: 10.12363/issn.1001-1986.24.08.0508
JIN Dan. A method for time difference correction for real-time seismic-while-mining data[J]. Coal Geology & Exploration,2025,53(3):190−196. DOI: 10.12363/issn.1001-1986.24.08.0508
Citation: JIN Dan. A method for time difference correction for real-time seismic-while-mining data[J]. Coal Geology & Exploration,2025,53(3):190−196. DOI: 10.12363/issn.1001-1986.24.08.0508

 

随掘地震实时采集数据同步时差校正方法

基金项目: 国家重点研发计划任务(2023YFC3008903-02);国家自然科学基金面上项目(42074175);西安院科技创新基金项目(2023XAYJS26)
详细信息
    作者简介:

    金丹,1987年生,女,陕西洋县人,博士,副研究员。E-mail:jd.h@163.com

  • 中图分类号: P631.8

A method for time difference correction for real-time seismic-while-mining data

  • 摘要:
    目的 

    随掘地震数据通常采用多台采集分站进行数据采集,各分站拥有多个采集通道,由于井下缺少GPS信号,同时现有的各种网络同步技术受井下网络延迟问题影响,从而使得接收到的随掘数据各分站之间经常会存在同步时差。而时间同步精度直接影响数据的处理及成像质量。因此,随掘地震实时采集数据的同步时差校正对于随掘地震的探测准确性至关重要。

    方法 

    由于当前地面高精度授时系统尚无有效解决井下信号丢失问题的方法,提出了一种基于随掘地震数据的自适应时差校正方法。以各分站独立扫描、综合分析的自适应速度分析方法,解决了各分站的同步时差对速度分析的影响;通过速度分析结果,计算各分站模型道,进而求取得到各分站的同步时差,实现随掘地震数据同步时差的自动校正。

    结果和结论 

    理论模型测试结果表明:该方法所得到的同步时差具有较高精度,并且受噪声影响较小。将其用于煤矿工作面实测随掘地震相干单炮记录,校正后的随掘地震记录各分站之间的时差被消除,且在信噪比较低的各道之间也未受到噪声影响,具有较好的自适应性。地震波传播的时间是随掘记录中的关键属性,通过精确校正时差,确保了各分站记录的随掘数据在时间上的一致性,从而显著提升了数据的准确性。

    Abstract:
    Objective 

    Seismic-while-mining (SWM) data are usually acquired using multiple stations, each of which is equipped with multiple data acquisition traces. However, the SWM data received by these stations exhibit time differences due to the lack of GPS signals underground and the fact that current network synchronization technologies are confined by network delays underground. Given that the time synchronization accuracy directly affects the quality of data processing and imaging, the time difference correction of real-time SWM data is essential for accurate SWM detection.

    Methods 

    Since current high-precision timing systems on the surface suffer from signal loss underground, this study proposed an adaptive time difference correction method based on SWM data. First, using an adaptive velocity analysis method characterized by separate scanning and combined analysis of data from various stations, the impacts of time differences between the stations on the velocity analysis were eliminated. Then, the model seismic traces of various stations were established based on the velocity analysis results. Accordingly, the time differences between the stations were derived, thereby achieving the automatic correction of time differences between SWM data.

    Results and Conclusions 

    The testing results of a theoretical model indicate that the time differences obtained using the new method were highly accurate and scarcely affected by noise. This method was applied to the measured coherent single-shot SWM records of a coal mine’s working face. The application results reveal that the time differences of corrected SWM records between the stations were eliminated. Furthermore, the correction of time differences between various seismic traces with low signal-to-noise ratios was free from noise, demonstrating high adaptability. The travel time of seismic waves is a key attribute in SWM records. The accurate correction of time differences ensures the temporal consistency of the SWM data recorded by various stations, significantly enhancing the data accuracy.

  • 图  1   同步时差校正流程

    Fig.  1   Flow chart of time difference correction

    图  2   模拟随掘地震记录时差校正前后对比

    Fig.  2   Comparison of simulated SWM records before and after time difference correction

    图  3   模拟加噪随掘地震记录时差校正前后对比

    Fig.  3   Comparison of simulated SWM records with noise before and after time difference correction

    图  4   实际采集的随掘地震数据

    Fig.  4   Collected SWM data

    图  5   实际随掘地震记录时差校正前后对比

    Fig.  5   Comparison of actual SWM records before and after time difference correction

    图  6   速度分析曲线

    Fig.  6   Velocity curve

    图  7   实际随掘地震记录时差校正前后成像对比

    Fig.  7   Comparison of imaging before and after time difference correction of field data of seismic while excavating

    表  1   介质参数各层分布

    Table  1   Distribution of medium parameters of various layers

    层号 纵波速度/(m·s−1) 横波速度/(m·s−1) 密度/(kg·m−3)
    1 3 800 2 000 2 400
    2 1 800 1 100 1 400
    3 3 800 2 000 2 400
    下载: 导出CSV

    表  2   时差校正前后各台站剩余时差

    Table  2   Remaining time difference table of each station before and after time difference correction

    台站 校正前时差/ms 校正后时差/ms 校正后精度/%
    台站1 −10 1 8
    台站2 −21 −1.5 12
    台站3 −32 −1.5 12
    台站4 0 0 0
    下载: 导出CSV
  • [1]

    ANDREW K,LUO Xun. Methodology for tomographic imaging ahead of mining using the shearer as a seismic source[J]. Geophysics,2009,74(2):M1−M8. DOI: 10.1190/1.3074334

    [2]

    TAYLOR N,MERRIAM J,GENDZWILL D,et al. The mining machine as a seismic source for in–seam reflection mapping[C]//SEG Technical Program Expanded Abstracts 2001. San Antonio:Society of Exploration Geophysicists,2001.

    [3]

    LU Bin,CHENG Jianyuan,HU Jiwu,et al. Seismic features of vibration induced by mining machines and feasibility to be seismic sources[J]. Procedia Earth and Planetary Science,2011,3:76−85. DOI: 10.1016/j.proeps.2011.09.068

    [4] 王保利,程建远,金丹,等. 煤矿井下随掘地震震源特征及探测性能研究[J]. 煤田地质与勘探,2022,50(1):10−19. DOI: 10.12363/issn.1001-1986.21.11.0639

    WANG Baoli,CHENG Jianyuan,JIN Dan,et al. Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J]. Coal Geology & Exploration,2022,50(1):10−19. DOI: 10.12363/issn.1001-1986.21.11.0639

    [5] 赵会波,覃思,陈超,等. 随掘地震地质构造精细监测在山西王坡煤矿的应用[J]. 煤田地质与勘探,2024,52(6):137−144. DOI: 10.12363/issn.1001-1986.24.03.0157

    ZHAO Huibo,QIN Si,CHEN Chao,et al. Geological structures fine monitoring using seismic–while–tunneling technique in Wangpo Mine[J]. Coal Geology & Exploration,2024,52(6):137−144. DOI: 10.12363/issn.1001-1986.24.03.0157

    [6] 刘翔宇,杨仁树,杨立云,等. 竖井巷道掘进超前地质探测研究进展与展望[J]. 煤炭科学技术,2024,52(增刊1):145−152.

    LIU Xiangyu,YANG Renshu,YANG Liyun,et al. Research progress and prospect of advanced geological exploration in shaft and roadway driving[J]. Coal Science and Technology,2024,52(Sup.1):145−152.

    [7] 程久龙,程鹏,李亚豪. 基于IABC–ICA的随掘地震去噪方法[J]. 煤炭学报,2022,47(1):413−422.

    CHENG Jiulong,CHENG Peng,LI Yahao. Denoising method of mine seismic while drilling data based on IABC–ICA[J]. Journal of China Coal Society,2022,47(1):413−422.

    [8] 程建远,王保利,范涛,等. 煤矿地质透明化典型应用场景及关键技术[J]. 煤炭科学技术,2022,50(7):1−12.

    CHENG Jianyuan,WANG Baoli,FAN Tao,et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology,2022,50(7):1−12.

    [9] 窦文武,卫金善,焦阳,等. 矿井分布式地震超前探测系统研究与应用[J]. 煤田地质与勘探,2020,48(2):228−234. DOI: 10.3969/j.issn.1001-1986.2020.02.033

    DOU Wenwu,WEI Jinshan,JIAO Yang,et al. Research and application of mine distributed seismic advance detection system[J]. Coal Geology & Exploration,2020,48(2):228−234. DOI: 10.3969/j.issn.1001-1986.2020.02.033

    [10] 程建远,王盼,吴海,等. 地震勘探仪的发展历程与趋势[J]. 煤炭科学技术,2013,41(1):30−35.

    CHENG Jianyuan,WANG Pan,WU Hai,et al. Progress and development tendency of seismic exploration instrument[J]. Coal Science and Technology,2013,41(1):30−35.

    [11] 李彩华,滕云田,周健超,等. 分布式地震数据采集器的高精度时间同步系统研制[J]. 地震学报,2022,44(6):1111−1120. DOI: 10.11939/jass.20210124

    LI Caihua,TENG Yuntian,ZHOU Jianchao,et al. Design on high–precision time–synchronization system for distributed seismic data acquisition[J]. Acta Seismologica Sinica,2022,44(6):1111−1120. DOI: 10.11939/jass.20210124

    [12] 易碧金,袁宗军,甘志强,等. 浅谈节点地震仪器原理及一体化采集站设计要点[J]. 物探装备,2021,31(5):281−286. DOI: 10.3969/j.issn.1671-0657.2021.05.001

    YI Bijin,YUAN Zongjun,GAN Zhiqiang,et al. Introduction to the principle of node seismic instruments and the design points of integrated acquisition stations[J]. Equipment for Geophysical Prospecting,2021,31(5):281−286. DOI: 10.3969/j.issn.1671-0657.2021.05.001

    [13] 白珊珊,李从庆,郭磊,等. 节点地震采集系统发展现状[J]. 地震地磁观测与研究,2019,40(6):130−138. DOI: 10.3969/j.issn.1003-3246.2019.06.019

    BAI Shanshan,LI Congqing,GUO Lei,et al. A review of the development of nodal seismic acquisition systems[J]. Seismological and Geomagnetic Observation and Research,2019,40(6):130−138. DOI: 10.3969/j.issn.1003-3246.2019.06.019

    [14] 刘成斋. 胜利油田三维地震数据连片处理[J]. 石油地球物理勘探,2004,39(5):579−585. DOI: 10.3321/j.issn:1000-7210.2004.05.016

    LIU Chengzhai. Data processing joining several 3–D seismic surveying blocks together in Shengli Oilfield[J]. Oil Geophysical Prospecting,2004,39(5):579−585. DOI: 10.3321/j.issn:1000-7210.2004.05.016

    [15] 左海,魏庚雨,何小松. 三维地震资料叠前连片处理技术[J]. 石油地球物理勘探,2008,43(增刊1):29−35.

    ZUO Hai,WEI Gengyu,HE Xiaosong. Block-jointed together processing technique of 3-D prestick seismic data[J]. Oil Geophysical Prospecting,2008,43(Sup.1):29−35.

    [16] 段云卿. 匹配滤波与子波整形[J]. 石油地球物理勘探,2006,41(2):156−159. DOI: 10.3321/j.issn:1000-7210.2006.02.008

    DUAN Yunqing. Matched filtering and wave shaping[J]. Oil Geophysical Prospecting,2006,41(2):156−159. DOI: 10.3321/j.issn:1000-7210.2006.02.008

    [17] 赵明秋,牛建国. 连接不同震源数据的匹配滤波技术[J]. 石油地球物理勘探,2007,42(增刊1):136−139.

    ZHAO Mingqiu,NIU Jianguo. A matchde filtering technique linking different sources data[J]. Oil Geophysical Prospecting,2007,42(Sup.1):136−139.

    [18] 张凯,李振春,曹景忠,等. 速度扫描法共聚焦点道集偏移速度分析[J]. 同济大学学报(自然科学版),2005,33(9):1265−1269. DOI: 10.3321/j.issn:0253-374X.2005.09.024

    ZHANG Kai,LI Zhenchun,CAO Jingzhong,et al. Migration velocity analysis of common focus point gathers based on velocity scanning[J]. Journal of Tongji University (Natural Science),2005,33(9):1265−1269. DOI: 10.3321/j.issn:0253-374X.2005.09.024

    [19] 刘守伟,王华忠,程玖兵,等. 时空移动成像条件及偏移速度分析[J]. 地球物理学报,2008,51(6):1883−1891. DOI: 10.3321/j.issn:0001-5733.2008.06.031

    LIU Shouwei,WANG Huazhong,CHENG Jiubing,et al. Space–time–shift imaging condition and migration velocity analysis[J]. Chinese Journal of Geophysics,2008,51(6):1883−1891. DOI: 10.3321/j.issn:0001-5733.2008.06.031

    [20] 朱金平,周强,李若禹,等. 一种基于Q层析技术的速度建模方法及应用[J]. 石油地球物理勘探,2023,58(5):1124−1132.

    ZHU Jinping,ZHOU Qiang,LI Ruoyu,et al. A velocity modeling method based on Q tomography and its application[J]. Oil Geophysical Prospecting,2023,58(5):1124−1132.

    [21] 高福建,邹志辉,王永红. 基于地震层析速度模型分析海滩地下结构:以青岛石老人海水浴场为例[J]. 地学前缘,2022,29(5):275−284.

    GAO Fujian,ZOU Zhihui,WANG Yonghong. Subsurface structure of seabeach revealed by seismic tomographic velocity model:An example of the Qingdao Shilaoren beach[J]. Earth Science Frontiers,2022,29(5):275−284.

    [22] 王连坤,方伍宝,段心标,等. 全波形反演初始模型建立策略研究综述[J]. 地球物理学进展,2016,31(4):1678−1687. DOI: 10.6038/pg20160436

    WANG Liankun,FANG Wubao,DUAN Xinbiao,et al. Review of full waveform inversion initial model building strategy[J]. Progress in Geophysics,2016,31(4):1678−1687. DOI: 10.6038/pg20160436

    [23] 段超然,韩立国. 主成分分析波场重构反演与全波形反演联合速度重构[J]. 石油地球物理勘探,2016,51(6):1134−1140.

    DUAN Chaoran,HAN Liguo. A joint velocity reconstruction method:principal component analysis based wavefield-reconstruction inversion combined with full waveform inversion[J]. Oil Geophysical Prospecting,2016,51(6):1134−1140.

    [24] 李江,李庆春,唐文. 角度道集匹配相关速度分析方法[J]. 石油地球物理勘探,2019,54(5):962−969.

    LI Jiang,LI Qingchun,TANG Wen. Matching correlation–function velocity analysis based on ADCIG[J]. Oil Geophysical Prospecting,2019,54(5):962−969.

    [25] 伍国富,肖明图,王华忠,等. Bayes决策理论下的速度谱智能化解释及建模方法[J]. 石油地球物理勘探,2023,58(3):590−625.

    WU Guofu,XIAO Mingtu,WANG Huazhong,et al. Intelligent interpretation and modeling methodof velocity semblance based on Bayesian decision theory[J]. Oil Geophysical Prospecting,2023,58(3):590−625.

图(7)  /  表(2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  7
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-01
  • 修回日期:  2025-03-03

目录

    /

    返回文章
    返回