弱动力扰动作用下岩石微裂隙演化特征及灾害防控

姜明伟, 梁运涛, 冯文彬, 李海涛, 周睿, 郭宝龙, 刘洋, 马举

姜明伟,梁运涛,冯文彬,等. 弱动力扰动作用下岩石微裂隙演化特征及灾害防控[J]. 煤田地质与勘探,2024,52(10):166−176. DOI: 10.12363/issn.1001-1986.24.04.0277
引用本文: 姜明伟,梁运涛,冯文彬,等. 弱动力扰动作用下岩石微裂隙演化特征及灾害防控[J]. 煤田地质与勘探,2024,52(10):166−176. DOI: 10.12363/issn.1001-1986.24.04.0277
JIANG Mingwei,LIANG Yuntao,FENG Wenbin,et al. Evolutionary characteristics of microcracks in rocks under weak dynamic disturbance and disaster prevention and control[J]. Coal Geology & Exploration,2024,52(10):166−176. DOI: 10.12363/issn.1001-1986.24.04.0277
Citation: JIANG Mingwei,LIANG Yuntao,FENG Wenbin,et al. Evolutionary characteristics of microcracks in rocks under weak dynamic disturbance and disaster prevention and control[J]. Coal Geology & Exploration,2024,52(10):166−176. DOI: 10.12363/issn.1001-1986.24.04.0277

 

弱动力扰动作用下岩石微裂隙演化特征及灾害防控

基金项目: 国家自然科学基金面上项目(5217042662);国家自然科学基金联合基金项目(U23B2094);国家重点研发计划项目(2023YFB3211000,2022YFC2904104)
详细信息
    作者简介:

    姜明伟,1995年生,男,辽宁丹东人,博士,工程师。E-mail:jiangmingwei_hale@163.com

    通讯作者:

    梁运涛,1974年生,男,河北晋州人,博士,研究员。E-mial:liangyuntao@vip.sina.com

  • 中图分类号: TD317

Evolutionary characteristics of microcracks in rocks under weak dynamic disturbance and disaster prevention and control

  • 摘要:
    目的 

    高应力叠加弱动力扰动是诱发冲击地压的关键因素,但不同扰动幅值、频率、卸载范围下的岩石微裂纹扩展特征和能量耗散规律尚不明确,无法为冲击地压防治提供技术支撑。

    方法 

    基于真三轴卸载动力扰动试验,分析了不同扰动幅值(5、10 MPa)、频率(4、10 Hz)、三向应力卸载(0、12 MPa)下深部围岩失稳破坏规律,并结合SEM扫描分析了岩石微裂隙特征。通过锚杆拉拔试验,优化了锚杆肋间距和肋高,提高了其吸能支护作用,提出了“吸能锚杆−低阻抗混凝土注浆−喷浆−挂网”组合支护技术。利用传感器对巷道进行长期监测,得到治理前后压力与振动数据。

    结果和结论 

    研究表明:(1)随着扰动幅值和频率的增加,裂纹增加显著且不规则,岩石断口的方向分形维数降低。当扰动为10 MPa、10 Hz时,分形维数降至最低值0.62,孔隙方向角80°~120°孔隙定向频率达到最大值的52%,约为原始岩石的1.68倍。说明岩石受扰动后颗粒的应力不均匀,导致应力集中,断裂方向明显。(2)随着扰动幅值和频率的增加,SEM图像的微孔隙面积先快速增加,后缓慢增加且增加趋势越来越小。扰动频率每增加2 Hz,岩石微裂隙面积增加约24.13%。(3)现场测试表明随着锚杆肋间距和肋高增加,拉拔曲线形态由“弹塑性阶段−破坏失效阶段−残余阶段”逐渐过渡为“弹塑性阶段−微量屈服阶段−大量强化阶段−破坏失效阶段−残余阶段”,肋间距48 mm、肋高2 mm的螺纹钢锚杆吸能效果最好。经现场监测可将巷道压力稳定在36 N左右,峰值加速度控制在8 000 mm/s2以内。研究揭示了卸载动力扰动作用下围岩破坏及能量释放规律,提出的“吸能锚杆−低阻抗混凝土注浆−喷浆−挂网”支护技术,可为类似深部工程提供理论指导。

    Abstract:
    Objective 

    High stress with superimposed weak dynamic disturbance serves as a critical factor including rock bursts. However, the microcrack propagation characteristics and energy dissipation pattern of rocks under different disturbance amplitude, frequencies, and unloading ranges remain unclear, leading to a lack of technical support for rock burst prevention and control.

    Methods 

    Based on the true triaxial unloading dynamic disturbance tests, this study analyzed the instability failure patterns of deep surrounding rocks under different disturbance amplitude (5, 10 MPa), frequencies (4, 10 Hz), and triaxial stress unloading (0, 12 MPa). Moreover, this study examined the characteristics of microcracks in rocks using scanning electron microscopy (SEM). Through bolt pull-out tests, this study enhanced the energy-absorbing support effects of bolts by optimizing the rib spacing and height of bolts. Accordingly, it proposed a combined support technique integrating energy-absorbing bolts, low-impedance concrete grouting, guniting, and screening. Additionally, the pressure and vibration data of roadways before and after treatment were obtained through long-term monitoring using sensors.

    Results and Conclusions 

    Key findings are as follows: (1) With an increase in disturbance amplitude and frequency, cracks increased significantly and irregularly, and the fractal dimension of rock fracture direction decreased. In the case of disturbance of 10 MPa and 10 Hz, the fractal dimension decreased to the lowest value of 0.62, with the orientation frequency of pores at angles ranging from 80° to 120° reaching the maximum value of 52%, which was about 1.68 times that of the original rocks. This finding suggests that the uneven stress distribution of rock particles after disturbance led to stress concentration and pronounced fracture direction. (2) With an increase in disturbance amplitude and frequency, the micropore areas revealed by SEM images shifted from a rapid growth to a slow growth, with the increasing amplitude decreasing gradually. Every increase of 2 Hz in disturbance frequency corresponded to an approximately 24.13% increase in the area of microcracks in rocks. (3) Field tests indicate that as the rib spacing and height of bolts increased, the pull-out curve pattern transitioned gradually from the elastoplastic, failure, and residual stages sequentially to elastoplastic, microyield, extensive yield reinforcement, failure, and residual stages successively. Threaded steel bolts with a rib spacing of 48 mm and a rib height of 2 mm exhibited the optimal energy-absorbing effect. Field monitoring indicates that the roadway pressure can be stabilized at about 36 N and the peak ground acceleration can be controlled at less than 8000 mm/s2. This study reveals the surrounding rock failure and energy release patterns under unloading dynamic disturbance and proposes the combined support technique integrating energy-absorbing bolts, low-impedance concrete grouting, guniting, and screening, serving as a theoretical guide for similar deep engineering.

  • 图  1   试样选取和制备

    Fig.  1   Sample selection and specimen preparation

    图  2   真三轴深部力学试验系统

    Fig.  2   True triaxial test system for deep mechanics

    图  3   加载路径

    Fig.  3   Loading path

    图  4   应力−应变曲线

    Fig.  4   Stress-strain curves

    图  5   岩石破坏形式

    Fig.  5   Rock failure forms

    图  6   裂隙空间分布

    Fig.  6   Spatial distribution of cracks

    图  7   频率分形维数

    Fig.  7   Frequency fractal dimension

    图  8   试样断口微观形貌

    Fig.  8   Microscopic morphologies of the fracture surfaces of specimens

    图  9   SEM微裂隙分布

    Fig.  9   SEM images showing microcrack distribution

    图  10   微裂隙面积变化曲线

    Fig.  10   Curves of microcrack areas

    图  11   锚杆拉拔曲线

    Fig.  11   Bolt pull-out curves

    图  12   锚杆吸能量与肋间距和肋高关系

    Fig.  12   Relationship of energy absorption of bolts with rib spacing and height

    图  13   综合支护工艺

    Fig.  13   Comprehensive support process

    图  14   巷道治理与数据监测

    Fig.  14   Roadway management and data monitoring

    表  1   岩样基本物理力学参数

    Table  1   General physical and mechanical parameters of rock samples

    体积密度/
    (kg·m−3)
    弹性模量/
    MPa
    纵波波速/
    (m·s−1)
    泊松比 极限强度/
    MPa
    屈服
    应变
    2 660 33.8 4 587 0.36 373 12.79
    下载: 导出CSV

    表  2   岩石峰值强度

    Table  2   Peak rock strength

    编号 $ {\sigma }_{3} $卸载至/
    MPa
    扰动幅值/
    MPa
    扰动频率/
    Hz
    峰值强度/
    MPa
    A-1 12 5 4 368
    A-2 12 5 10 343
    A-3 12 10 4 329
    A-4 12 10 10 312
    A-5 0 5 4 288
    A-6 0 5 10 281
    A-7 0 10 4 275
    A-8 0 10 10 267
    下载: 导出CSV
  • [1]

    XIE Heping,LU Jun,LI Cunbao,et al. Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress:A review[J]. International Journal of Mining Science and Technology,2022,32(5):915−950. DOI: 10.1016/j.ijmst.2022.05.006

    [2]

    JIANG Mingwei,FAN Yuyun,SU Weiwei,et al. Optimization of support and relief parameters for deep-buried metal mine roadways[J]. Geofluids,2024,2024:8816030.

    [3] 谢和平. 深部岩体力学与开采理论[M]. 北京:科学出版社,2021.
    [4] 张超林,王培仲,王恩元,等. 我国煤与瓦斯突出机理70年发展历程与展望[J]. 煤田地质与勘探,2023,51(2):59−94. DOI: 10.12363/issn.1001-1986.23.02.0054

    ZHANG Chaolin,WANG Peizhong,WANG Enyuan,et al. Coal and gas outburst mechanism:Research progress and prospect in China over the past 70 years[J]. Coal Geology & Exploration,2023,51(2):59−94. DOI: 10.12363/issn.1001-1986.23.02.0054

    [5] 汪北方,梁冰,张晶,等. 红山煤矿石门揭突出煤层综合防突技术[J]. 煤田地质与勘探,2019,47(5):86−93. DOI: 10.3969/j.issn.1001-1986.2019.05.012

    WANG Beifang,LIANG Bing,ZHANG Jing,et al. Comprehensive outburst prevention technology of outburst-prone coal seam uncovered by crossdrift in Hongshan Coal Mine[J]. Coal Geology & Exploration,2019,47(5):86−93. DOI: 10.3969/j.issn.1001-1986.2019.05.012

    [6] 董陇军,闫先航,裴重伟,等. 岩体多源声学设备在地压与顶板灾害监测防控中的应用[J]. 金属矿山,2023(5):185−194.

    DONG Longjun,YAN Xianhang,PEI Zhongwei,et al. Case study of rock mass multi-source acoustic equipment in monitoring and prevention of ground pressure and roof disaster[J]. Metal Mine,2023(5):185−194.

    [7] 刘开航,冯磊,云美厚,等. 煤层顶板高地应力区对微震层析反演的影响[J]. 煤田地质与勘探,2023,51(7):174−183. DOI: 10.12363/issn.1001-1986.23.02.0055

    LIU Kaihang,FENG Lei,YUN Meihou,et al. Influence of high in situ stress areas in the coal seam roofs on microseism-based tomographic inversion[J]. Coal Geology & Exploration,2023,51(7):174−183. DOI: 10.12363/issn.1001-1986.23.02.0055

    [8] 吴学明,马小辉,吕大钊,等. 彬长矿区 “井上下” 立体防治冲击地压新模式[J]. 煤田地质与勘探,2023,51(3):19−26. DOI: 10.12363/issn.1001-1986.22.08.0640

    WU Xueming,MA Xiaohui,LYU Dazhao,et al. A new model of surface and underground integrated three-dimensional prevention and control of rock burst in Binchang Mining Area[J]. Coal Geology & Exploration,2023,51(3):19−26. DOI: 10.12363/issn.1001-1986.22.08.0640

    [9] 兰天伟,张志佳,袁永年,等. 矿井地质动力环境评价方法与冲击地压矿井类型划分研究[J]. 煤田地质与勘探,2023,51(2):104−113. DOI: 10.12363/issn.1001-1986.22.12.0913

    LAN Tianwei,ZHANG Zhijia,YUAN Yongnian,et al. An evaluation method for geological dynamic environments of mines and the classification of mines subjected to rock bursts[J]. Coal Geology & Exploration,2023,51(2):104−113. DOI: 10.12363/issn.1001-1986.22.12.0913

    [10] 潘俊锋,夏永学,王书文,等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报,2024,49(3):1291−1302.

    PAN Junfeng,XIA Yongxue,WANG Shuwen,et al. Technical difficulties and development direction of deep rockburst prevention and control engineering in China[J]. Journal of China Coal Society,2024,49(3):1291−1302.

    [11] 刘洪涛,陈子晗,韩洲,等. 动载扰动诱发巷道冲击的风险性分析[J]. 煤炭学报,2024,49(4):1771−1785.

    LIU Hongtao,CHEN Zihan,HAN Zhou,et al. Analysis of dynamic loading events and the risk of roadway rockburst[J]. Journal of China Coal Society,2024,49(4):1771−1785.

    [12] 来兴平,贾冲,胥海东,等. 急倾斜深埋巨厚煤层掘巷冲击地压前兆特征及其灾害防治[J]. 煤炭学报,2024,49(1):337−350.

    LAI Xingping,JIA Chong,XU Haidong,et al. Precursory characteristics and disaster prevention of rock burst in roadway excavation in steeply inclined extra-thick coal seam[J]. Journal of China Coal Society,2024,49(1):337−350.

    [13] 宋振骐,文志杰,蒋宇静,等. 采动力学与岩层控制关键理论及工程应用[J]. 煤炭学报,2024,49(1):16−35.

    SONG Zhenqi,WEN Zhijie,JIANG Yujing,et al. Theory and application of mining mechanics and strata control[J]. Journal of China Coal Society,2024,49(1):16−35.

    [14] 谭云亮,张修峰,肖自义,等. 冲击地压主控因素及孕灾机制[J]. 煤炭学报,2024,49(1):367−379.

    TAN Yunliang,ZHANG Xiufeng,XIAO Ziyi,et al. Main control factors of rock burst and its disaster evolution mechanism[J]. Journal of China Coal Society,2024,49(1):367−379.

    [15]

    HE Manchao,WANG Qi. Rock dynamics in deep mining[J]. International Journal of Mining Science and Technology,2023,33(9):1065−1082. DOI: 10.1016/j.ijmst.2023.07.006

    [16]

    ZHAO Shifan,GAO Mingshi,XU Dong,et al. Fracture characteristics of thick-roof coal roadway subjected to duplicated shock waves[J]. Sustainability,2023,15(6):5308. DOI: 10.3390/su15065308

    [17]

    WANG Gang,FENG Xiating,YANG Chengxiang,et al. Experimental study of the mechanical characteristics of Jinping marble under multi-stage true triaxial compression testing[J]. Rock Mechanics and Rock Engineering,2022,55(2):953−966. DOI: 10.1007/s00603-021-02704-8

    [18] 朱小景,潘一山,李祁,等. 巷道冲击地压软化区能量极值判别准则及试验研究[J]. 中国矿业大学学报,2021,50(5):975−982.

    ZHU Xiaojing,PAN Yishan,LI Qi,et al. Softening zone energy extremum criterion and experimental study of roadway rock burst[J]. Journal of China University of Mining & Technology,2021,50(5):975−982.

    [19] 姜明伟,王子君,戴星航,等. 工作面运输平巷超前支护技术优化研究[J]. 中国煤炭,2020,46(3):90−94. DOI: 10.3969/j.issn.1006-530X.2020.03.019

    JIANG Mingwei,WANG Zijun,DAI Xinghang,et al. Study on optimization of advanced support technology in haulage roadway of working face[J]. China Coal,2020,46(3):90−94. DOI: 10.3969/j.issn.1006-530X.2020.03.019

    [20]

    GU Shitan,CHEN Huaixu,LI Wenshuai,et al. Study on occurrence mechanism and prevention technology of rock burst in narrow coal pillar working face under large mining depth[J]. Sustainability,2022,14(22):15435. DOI: 10.3390/su142215435

    [21]

    ZHANG Chuanqing,XU Jie,JIN Shengji,et al. Influence of microroughness on stick–slip characteristics of fault under constant normal stiffness[J]. Rock Mechanics and Rock Engineering,2022,55(4):2281−2298. DOI: 10.1007/s00603-022-02778-y

    [22] 何满潮,赵菲,杜帅,等. 不同卸载速率下岩爆破坏特征试验分析[J]. 岩土力学,2014,35(10):2737−2747.

    HE Manchao,ZHAO Fei,DU Shuai,et al. Rockburst characteristics based on experimental tests under different unloading rates[J]. Rock and Soil Mechanics,2014,35(10):2737−2747.

    [23] 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,2021,46(3):846−866.

    LI Xibing,GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society,2021,46(3):846−866.

    [24] 朱小景,潘一山,齐庆新,等. 矿震诱发巷道冲击地压力学机制及判别准则研究[J]. 采矿与安全工程学报,2024,41(3):493−503.

    ZHU Xiaojing,PAN Yishan,QI Qingxin,et al. Study on mechanical mechanism and criterion of roadway rockburst induced by mine earthquake[J]. Journal of Mining & Safety Engineering,2024,41(3):493−503.

    [25] 周楠,李泽君,张吉雄,等. 采区坚硬岩层动力灾害致灾能量演化及充填弱化机理研究[J]. 采矿与安全工程学报,2023,40(5):1078−1091.

    ZHOU Nan,LI Zejun,ZHANG Jixiong,et al. Energy evolution and backfilling weakening mechanism of hard rock strata causing dynamic disasters in coal mining district[J]. Journal of Mining & Safety Engineering,2023,40(5):1078−1091.

    [26] 朱建波,马斌文,谢和平,等. 煤矿矿震与冲击地压的区别与联系及矿震扰动诱冲初探[J]. 煤炭学报,2022,47(9):3396−3409.

    ZHU Jianbo,MA Binwen,XIE Heping,et al. Differences and connections between mining seismicity and coal bursts in coal mines and preliminary study on coal bursts induced by mining seismicity[J]. Journal of China Coal Society,2022,47(9):3396−3409.

    [27] 张良,齐庆新,REN Ting,等. 基于显微CT扫描和统计强度的煤岩损伤破裂特性研究 [J]. 煤炭科学技术,2024,51(增刊2):1–12.

    ZHANG Liang,QI Qingxin,REN Ting,et al. Research on damage and fracture characteristics of coal and rock based on micro CT scanning and statistical intensity[J] Coal Science and Technology,2024,51(Sup.2):1–12.

    [28] 张希巍,冯夏庭,孔瑞,等. 硬岩应力−应变曲线真三轴仪研制关键技术研究[J]. 岩石力学与工程学报,2017,36(11):2629−2640.

    ZHANG Xiwei,FENG Xiating,KONG Rui,et al. Key technology in development of true triaxial apparatus to determine stress-strain curves for hard rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(11):2629−2640.

    [29] 张希巍,彭帅. 硬岩等向压缩和三轴剪切变形特点与脆性演化关系[C]//中国力学学会,北京理工大学. 中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集(A). 东北大学深部金属矿山安全开采教育部重点实验室,2017,9.
    [30] 何满潮,贾雪娜,苗金丽,等. 岩爆机制及其控制对策实验研究[C]//中国岩石力学与工程学会. 岩石力学与工程的创新和实践:第十一次全国岩石力学与工程学术大会论文集. 湖北科学技术出版社,2010,11.
    [31] 苏国韶,莫金海,陈智勇,等. 支护失效对岩爆弹射破坏影响的真三轴试验研究[J]. 岩土力学,2017,38(5):1243−1250.

    SU Guoshao,MO Jinhai,CHEN Zhiyong,et al. True triaxial test study of the influence of support failure on rockburst ejection[J]. Rock and Soil Mechanics,2017,38(5):1243−1250.

    [32] 孙盛玥,李迎春,唐春安,等. 天然岩石节理双阶粗糙度分形特征研究[J]. 岩石力学与工程学报,2019,38(12):2502−2511.

    SUN Shengyue,LI Yingchun,TANG Chun’an,et al. Dual fractal features of the surface roughness of natural rock joints[J]. Chine se Journal of Rock Mechanics and Engineering,2019,38(12):2502−2511.

  • 期刊类型引用(17)

    1. 王淑璇,王强民,曹煜,王浩. 榆横矿区典型矿井含水层水力联系辨识. 能源与环保. 2025(02): 101-105+111 . 百度学术
    2. 马国逢,刘洋,杨建,王强民. 蒙陕深埋煤层首采工作面顶板富水性和涌水量差异研究. 煤炭工程. 2024(02): 87-91 . 百度学术
    3. 丁莹莹,尹尚先,连会青,卜昌森,刘伟,夏向学,周旺. 基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究. 中国安全生产科学技术. 2024(03): 110-117 . 百度学术
    4. 任海帆. 鄂尔多斯盆地煤层气开发井壁稳定性技术研究. 中国高新科技. 2024(07): 123-125 . 百度学术
    5. 邓启锐,高建峰,刘飞,徐士哲,许珂,王杰,南忠辉. 基于不完整井非稳定运动的立井井筒涌水量预测研究. 煤炭工程. 2024(08): 172-176 . 百度学术
    6. 付德渊,樊江伟,乌阳嘎,黄海鱼,白志君,李哲. 基于AHP的东胜煤田煤层顶板充水强度分区评价. 陕西煤炭. 2024(09): 58-63+99 . 百度学术
    7. 周振方,董书宁,董阳,罗生虎,薛建坤,王治宙,王淑璇,尚宏波,王甜甜,王昱同,王同. 蒙陕接壤区典型煤层开采顶板周期性变形破坏及涌水响应特征. 煤田地质与勘探. 2024(08): 101-110 . 本站查看
    8. 贾继平,李赵岩,李涛,田超超. 黄陵一号煤矿814工作面采前防治水安全评价. 陕西煤炭. 2024(10): 91-95 . 百度学术
    9. 陈云民,李媛,苏士杰,吴永辉,周新河. 基于小波变换的煤矿区地下水位动态变化特征分析. 煤炭工程. 2024(S1): 153-162 . 百度学术
    10. 杨建,王皓,王强民,张溪彧,王甜甜. 蒙陕接壤区矿井水中典型污染组分特征及来源. 煤炭学报. 2023(04): 1687-1696 . 百度学术
    11. 王林威,靖娟,尚文绣. 矿井大量涌水地区多水源联合配置. 水资源与水工程学报. 2023(03): 37-45+54 . 百度学术
    12. 刘慧,刘桂芹,宁殿艳,樊娟,陈卫明. 基于VMD-DBN的矿井涌水量预测方法. 煤田地质与勘探. 2023(06): 13-21 . 本站查看
    13. 孙刚友,胡清珍,康钦容,夏缘帝,袁威,张卫中. 基于大井法和地下水模型系统数值模拟方法的某矿坑涌水量预测对比分析. 科学技术与工程. 2023(21): 9024-9031 . 百度学术
    14. 王皓,周振方,杨建,赵春虎,曹煜,冯龙飞,尚宏波,王甜甜,王昱同,薛建坤. 蒙陕接壤区典型煤层开采地下水系统扰动的定量表征. 煤炭科学技术. 2023(07): 83-93 . 百度学术
    15. 康占忠,刘洋. 榆神矿区水文地球化学特征精细分层研究. 煤炭技术. 2022(08): 72-75 . 百度学术
    16. 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律. 煤田地质与勘探. 2022(12): 152-158 . 本站查看
    17. 周新河,翁明月,苏士杰,李广疆. 近距离煤层顶板水害立体防控技术研究——以蒙陕深部矿井为例. 煤炭科学技术. 2021(12): 165-172 . 百度学术

    其他类型引用(3)

图(14)  /  表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  2
  • PDF下载量:  29
  • 被引次数: 20
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-08-08
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回