Natural gamma-ray log-derived heat production rates of strata and lithospheric thermal structure in the central depression, Yinggehai Basin
-
摘要:目的
岩石圈热结构对探索盆地热演化的动力学过程、地热资源评价和开发利用具有重要意义。由于莺歌海盆地生热率数据的匮乏,限制了岩石圈热结构的研究。
方法利用莺歌海盆地23口钻井的自然伽马测井数据,通过GR(自然伽马值)-A(岩石放射性生热率)经验公式,计算莺歌海盆地中央凹陷的地层生热率;依托OBS地壳速度结构模型建立地层生热率参数柱,计算壳幔热流及其比值、莫霍面温度和热岩石圈厚度,获取岩石圈热结构。
结果和结论结果表明:莺歌海盆地中央凹陷地壳热流为19.2~27.1 mW/m2,平均值为(23.5±2.8) mW/m2,地幔热流为49.2~57.2 mW/m2,平均值为(52.8±2.8) mW/m2;莫霍面温度为613~707 ℃,平均温度为(671±31) ℃;热岩石圈厚度为61.23~64.89 km,平均厚度为(63.58±1.35) km;壳幔热流配比为0.45±0.08,岩石圈热结构表现出“冷壳热幔”的特征,反映出莺歌海盆地中央凹陷的热状态受深部热源的影响。研究成果不仅为该地区地热资源的进一步勘探和开发提供了科学依据,还为盆地的地球动力学研究提供重要参考。
Abstract:ObjectiveUnderstanding the lithospheric thermal structure is significant for exploring the dynamics of a basin's thermal evolution, as well as for the assessment, exploitation, and utilization of geothermal resources in a basin. However, the limited data on heat production in the Yinggehai Basin has constrained research into the lithospheric thermal structure of the basin.
MethodsUsing natural gamma-ray (NGR) logs from 23 wells in the Yinggehai Basin, this study calculated the heat production rates of strata in the central depression using the fitted gamma-ray value (GR) - radiogenic heat production rate (A) empirical formula. Based on the ocean bottom seismometer (OBS)-derived crustal velocity structure model, this study established a parameter column of the heat production rates of strata. Accordingly, this study calculated the crustal and mantle heat flow, the crustal-mantle heat flow ratio, Moho temperature, and thermal lithospheric thickness, thereby determining the lithospheric thermal structure.
Results and ConclusionsThe results indicate that the central depression of the Yinggehai Basin exhibits crustal heat flow ranging from 19.2 to 27.1 mW/m2, with an average of (23.5±2.8) mW/m2; mantle heat flow from 49.2 to 57.2 mW/m2, with an average of (52.8±2.8) mW/m2; Moho temperature from 613 to 707 ℃, with an average of (671±31) ℃, and thermal lithospheric thickness from 61.23 to 64.89 km, with an average of (63.58±1.35) km. With a crust-mantle heat flow ratio of (0.45±0.08), the lithospheric thermal structure is characterized by cold crust and hot mantle, indicating the impacts of deep heat sources on the thermal state of the central depression in the Yinggehai Basin. The results of this study not only provide a scientific basis for further exploration and exploitation of geothermal resources in the central depression but also serve as a valuable reference for research on the geodynamics of the basin.
-
-
表 1 不同公式计算出的生热率值与实测值对比
Table 1 Comparison of heat production rates calculated using different formulas and those measured
表 2 莺歌海盆地中央凹陷地层生热率及样本数
Table 2 Heat production rates and sample quantities for strata in the central depression of the Yinggehai Basin
地层 样本数 生热率/(μW·m−3) 范围 均值±标准差 乐东组(Q) 2 959 0.12~2.24 1.09±0.39 莺歌海组(N2y) 3 767 0.53~2.90 1.46±0.36 黄流组(N1h) 818 0.35~2.70 1.47±0.42 梅山组(N1m) 594 0.30~3.10 1.33±0.43 三亚组(N1s) 129 0.70~2.50 1.34±0.30 陵水组(E3l) 168 0.80~3.80 1.76±0.52 表 3 莺歌海盆地中央凹陷大地热流[38]
Table 3 Terrestrial heat flow in the central depression of the Yinggehai Basin[38]
井号 大地热流/(mW·m−2) 均值±标准差/(mW·m−2) DF1-1-1 77.9 76.4±8.5 DF1-1-3 79.8 DF1-1-5 83.6 DF1-1-7 83.7 DF1-1-9 79.8 LD8-1-1 70.3 LD15-1-1 81.7 LD20-1-1 57.4 LD22-1-1 65.8 LD22-1-6 83.6 表 4 莺歌海盆地中央凹陷地层生热率及热导率
Table 4 Heat production rates and thermal conductivities of strata in the central depression of the Yinggehai Basin
地层 生热率/(μW·m−3) 热导率/(W·m−1·K−1) 范围 均值±标准差 范围 均值±标准差 乐东组(Q) 0.12~2.24 1.09±0.39 1.40 莺歌海组(N2y) 0.53~2.90 1.46±0.36 1.33~2.09 1.82±0.35 黄流组(N1h) 0.35~2.70 1.47±0.42 2.12~3.42 2.61±0.46 梅山组(N1m) 0.30~3.10 1.33±0.43 2.34 三亚组(N1s) 0.70~2.50 1.34±0.30 2.02 陵水组(E3l) 0.80~3.80 1.76±0.52 2.10 表 5 莺歌海盆地中央凹陷地壳结构物性参数
Table 5 Physical property parameters of the crustal structure in the central depression of the Yinggehai Basin
表 6 莺歌海盆地中央凹陷A—A剖面地壳热流计算结果
Table 6 Calculated crustal heat flow along section A—A of the central depression in the Yinggehai Basin
观测点 厚度/km 生热率/(μW·m−3) 地壳热流/(mW·m−2) 沉积层 上地壳上部 上地壳下部低速带 下地壳 沉积层 上地壳上部 上地壳下部低速带 下地壳 A1 1.74 4.64 7.82 12.32 1.33 0.89 1.30 0.21 19.2 A2 2.74 4.40 8.00 11.38 1.33 0.89 1.30 0.21 20.4 A3 4.29 5.42 8.50 8.29 1.33 0.89 1.30 0.21 23.3 A4 7.60 4.40 6.60 4.40 1.33 0.89 1.30 0.21 23.5 A5 11.00 3.14 4.46 4.40 1.33 0.89 1.30 0.21 24.2 A6 13.00 2.40 4.96 5.33 1.33 0.89 1.30 0.21 27.0 A7 13.20 2.48 4.83 5.21 1.33 0.89 1.30 0.21 27.1 平均值 7.65±4.49 3.38±1.08 6.45±1.57 7.33±3.11 1.33 0.89 1.30 0.21 23.5±2.8 表 7 莺歌海盆地中央凹陷岩石圈热结构
Table 7 Lithospheric thermal structure in the central depression of the Yinggehai Basin
观测点 莫霍面温度/℃ 热岩石圈厚度/km 地壳热流/(mW·m−2) 地幔热流/(mW·m−2) 壳幔热流配比 A1 682 61.23 19.2 57.2 0.34 A2 681 61.91 20.4 56.0 0.36 A3 667 64.84 23.3 53.0 0.44 A4 613 64.89 23.5 52.8 0.45 A5 643 63.49 24.2 52.2 0.46 A6 705 64.32 27.0 49.4 0.55 A7 707 64.37 27.1 49.2 0.55 平均值 671±31 63.58±1.35 23.5±2.8 52.8±2.8 0.45±0.08 -
[1] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31. DOI: 10.3981/j.issn.1000-7857.2012.32.002 WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review,2012,30(32):25−31. DOI: 10.3981/j.issn.1000-7857.2012.32.002
[2] WANG Yingchun,PANG Zhonghe. Heat flux in volcanic and geothermal areas:Methods,principles,applications and future directions[J]. Gondwana Research,2023,122:260−278. DOI: 10.1016/j.gr.2022.09.010
[3] 王成善,邓军,董云鹏. 特约主编致读者:地球系统科学研究范例、进展和趋势[J]. 地学前缘,2024,31(1):I0001−I0004. [4] 饶松,高腾,肖红平,等. 中国油区地热开发利用进展[J]. 科技导报,2022,40(20):65−75. RAO Song,GAO Teng,XIAO Hongping,et al. Progress and prospective of geothermal exploitation and utilization in oil fields of China[J]. Science & Technology Review,2022,40(20):65−75.
[5] 孙家振,李兰斌,杨士恭,等. 转换–伸展盆地:莺歌海的演化[J]. 地球科学,1995,20(3):243−249. SUN Jiazhen,LI Lanbin,YANG Shigong,et al. Evolution of transform:Extension Yinggehai Basin[J]. Earth Science,1995,20(3):243−249.
[6] 关成尧,赵国春,刘翠,等. 莺歌海盆地形成的约束条件及动力学模式[J]. 科学技术与工程,2017,17(29):8−18. DOI: 10.3969/j.issn.1671-1815.2017.29.002 GUAN Chengyao,ZHAO Guochun,LIU Cui,et al. Constraint conditions and dynamic models for the forming of Yinggehai Basin[J]. Science Technology and Engineering,2017,17(29):8−18. DOI: 10.3969/j.issn.1671-1815.2017.29.002
[7] 汪集暘. 地热学及其应用[M]. 北京:科学出版社,2015. [8] 何丽娟,熊亮萍,汪集旸,等. 莺歌海盆地构造热演化模拟研究[J]. 中国科学(D辑),2000,30(4):415−419. DOI: 10.3969/j.issn.1674-7240.2000.04.011 HE Lijuan,XIONG Liangping,WANG Jiyang,et al. Tectonic thermal evolution simulation study of the Yinggehai Basin[J]. Science In China (Series D),2000,30(4):415−419. DOI: 10.3969/j.issn.1674-7240.2000.04.011
[9] HE Lijuan,XIONG Liangping,WANG Jiyang. Heat flow and thermal modeling of the Yinggehai Basin,South China Sea[J]. Tectonophysics,2002,351(3):245−253. DOI: 10.1016/S0040-1951(02)00160-9
[10] 唐晓音,饶松,单竞男,等. 莺歌海盆地现今地温场特征[C]//中国地球物理学会第二十七届年会论文集. 北京:中国地球物理学会,2011:218. [11] BAUMANN M,RYBACH L. Temperature field modelling along the northern segment of the European geotraverse and the Danish transition zone[J]. Tectonophysics,1991,194(4):387−407. DOI: 10.1016/0040-1951(91)90306-D
[12] 谢玉洪,童传新,裴健翔,等. 莺歌海盆地黄流组二段碎屑锆石年龄与储层物源分析[J]. 大地构造与成矿学,2016,40(3):517−530. XIE Yuhong,TONG Chuanxin,PEI Jianxiang,et al. Detrital zircon ages and reservoir source of the second member of the Huangliu Formation in the Yinggehai Basin[J]. Geotectonica et Metallogenia,2016,40(3):517−530.
[13] 何家雄,夏斌,张树林,等. 莺歌海盆地泥底辟成因、展布特征及其与天然气运聚成藏关系[J]. 中国地质,2006,33(6):1336−1344. HE Jiaxiong,XIA Bin,ZHANG Shulin,et al. Origin and distribution of mud diapirs in the Yinggehai Basin and their relation to the migration and accumulation of natural gas[J]. Geology in China,2006,33(6):1336−1344.
[14] 刘雨晴. 南海周缘新生代盆地结构时空差异及其控制因素[D]. 青岛:中国石油大学(华东),2019. LIU Yuqing. Temporal-spatial basin structure differences and their controlling factors of the Cenozoic basins around the south[D]. Qingdao:China University of Petroleum (East China),2019.
[15] 韩丙耀. 莺歌海盆地构造变形解剖及沙箱模拟实验[D]. 北京:中国石油大学(北京),2018. HAN Bingyao. Structural deformation anatomy and sandbox simulation experiment in Yinggehai Basin[D]. Beijing:China University of Petroleum (Beijing),2018.
[16] 王策. 莺歌海盆地上中新统–更新统储层物源识别:来自碎屑锆石U-Pb年代学和地球化学制约[D]. 广州:中国科学院研究生院(广州地球化学研究所),2016. WANG Ce. Provenance discrimination of Upper Miocene to Pleistocene reservoirs in the Yinggehai Basin:constrains from detrital zircon U-Pb geochronology and geochemistry of sedimentary rocks[D]. Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,2016.
[17] 孙珍,钟志洪,周蒂,等. 红河断裂带的新生代变形机制及莺歌海盆地的实验证据[J]. 热带海洋学报,2003,22(2):1−9. SUN Zhen,ZHONG Zhihong,ZHOU Di,et al. Deformation mechanism of red river fault zone during Cenozoic and experimental evidences related to Yinggehai Basin formation[J]. Journal of Tropical Oceanography,2003,22(2):1−9.
[18] ALLEN C R,GILLESPIE A R,HAN Yuan,et al. Red river and associated faults,Yunnan Province,China:Quaternary geology,slip rates,and seismic hazard[J]. Geological Society of America Bulletin,1984,95(6):686. DOI: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2
[19] CHEN Xiaoyu,LIU Junlai,TANG Yuan,et al. Contrasting exhumation histories along a crustal-scale strike-slip fault zone:The Eocene to Miocene Ailao Shan-Red River shear zone in southeastern Tibet[J]. Journal of Asian Earth Sciences,2015,114:174−187. DOI: 10.1016/j.jseaes.2015.05.020
[20] RYBACH L. Radioactive heat production in rocks and its relation to other petrophysical parameters[J]. Pure and Applied Geophysics,1976,114(2):309−317. DOI: 10.1007/BF00878955
[21] RYBACH L. Amount and significance of radioactive heat sources in sediments[J]. Thermal Modeling in Sedimentary Basins,1986:311–322.
[22] BÜCKER C,RYBACH L. A simple method to determine heat production from gamma-ray logs[J]. Marine and Petroleum Geology,1996,13(4):373−375. DOI: 10.1016/0264-8172(95)00089-5
[23] 饶松,朱传庆,廖宗宝,等. 利用自然伽马测井计算准噶尔盆地沉积层生热率及其热流贡献[J]. 地球物理学报,2014,57(5):1554−1567. RAO Song,ZHU Chuanqing,LIAO Zongbao,et al. Heat production rate and heat flow contribution of the sedimentary formation in Junggar Basin,northwest China[J]. Chinese Journal of Geophysics,2014,57(5):1554−1567.
[24] 罗昕,朱传庆,张宝收,等. 利用自然伽马测井估算塔里木盆地沉积层生热率[J]. 地质学报,2020,94(7):2078−2088. LUO Xin,ZHU Chuanqing,ZHANG Baoshou,et al. Heat production rate calculation using gamma-ray logging of the sedimentary formation in the Tarim Basin,northwest China[J]. Acta Geologica Sinica,2020,94(7):2078−2088.
[25] 毕然,朱焕来,杜先利. 基于自然伽马测井的徐家围子断陷沉积层生热率研究[J]. 甘肃科学学报,2023,35(1):15−22. BI Ran,ZHU Huanlai,DU Xianli. Heat production rate calculation using gamma-ray logging of the sedimentary formation in the Xujiaweizi Fault Depression[J]. Journal of Gansu Sciences,2023,35(1):15−22.
[26] RYBACH L,BUNTEBARTH G. The variation of heat generation,density and seismic velocity with rock type in the continental lithosphere[J]. Tectonophysics,1984,103(1/2/3/4):335−344.
[27] 胡圣标,龙祖烈,朱俊章,等. 珠江口盆地地温场特征及构造–热演化[J]. 石油学报,2019,40(增刊1):178−187. HU Shengbiao,LONG Zulie,ZHU Junzhang,et al. Characteristics of geothermal field and tectonic-thermal evolution in Pearl River Mouth Basin[J]. Acta Petrolei Sinica,2019,40(Sup.1):178−187.
[28] 邱楠生,胡圣标,何丽娟. 沉积盆地地热学[M]. 青岛:中国石油大学出版社,2019. [29] 汪集旸,汪缉安. 辽河裂谷盆地地幔热流[J]. 地球物理学报,1986,29(5):450−459. WANG Jiyang,WANG Ji’an. Mantle heat flow of Liaohe rifted basin in North China[J]. Chinese Journal of Geophysics,1986,29(5):450−459.
[30] 施小斌,王振峰,蒋海燕,等. 张裂型盆地地热参数的垂向变化与琼东南盆地热流分布特征[J]. 地球物理学报,2015,58(3):939−952. SHI Xiaobin,WANG Zhenfeng,JIANG Haiyan,et al. Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin[J]. Chinese Journal of Geophysics,2015,58(3):939−952.
[31] MORGAN P. The thermal structure and thermal evolution of the continental lithosphere[J]. Physics and Chemistry of the Earth,1984,15:107−193. DOI: 10.1016/0079-1946(84)90006-5
[32] ARTEMIEVA I M,MOONEY W D. Thermal thickness and evolution of Precambrian lithosphere:A global study[J]. Journal of Geophysical Research:Solid Earth,2001,106(B8):16387−16414. DOI: 10.1029/2000JB900439
[33] 郑峰,宋荣彩,董贵宇,等. 莺歌海盆地现今地温场及热结构研究[J]. 成都理工大学学报(自然科学版),2023,50(6):661−672. ZHENG Feng,SONG Rongcai,DONG Guiyu,et al. Study on present geothermal field and thermal structure in Yinggehai Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2023,50(6):661−672.
[34] 唐晓音,黄少鹏,张功成,等. 南海北部陆缘珠江口盆地岩石圈热结构[J]. 地球物理学报,2018,61(9):3749−3759. TANG Xiaoyin,HUANG Shaopeng,ZHANG Gongcheng,et al. Lithospheric thermal structure of the Pearl River Mouth Basin,northern South China Sea[J]. Chinese Journal of Geophysics,2018,61(9):3749−3759.
[35] 夏戡原,周蒂,苏达权,等. 莺歌海盆地速度结构及其对油气勘探的意义[J]. 科学通报,1998,43(4):361−367. [36] 刘赛君,曾钢平,丘学林,等. 海南岛西南海域地壳剖面海陆联合探测研究[J]. 地球物理学进展,2011,26(3):922−933. DOI: 10.3969/j.issn.1004-2903.2011.03.018 LIU Saijun,ZENG Gangping,QIU Xuelin,et al. The crustal profile and onshore-offshore seismic exploration in the marine area southwest to Hainan Island[J]. Progress in Geophysics,2011,26(3):922−933. DOI: 10.3969/j.issn.1004-2903.2011.03.018
[37] 张健,宋海斌,李家彪. 南海西南海盆构造演化的热模拟研究[J]. 地球物理学报,2005,48(6):1357−1365. ZHANG Jian,SONG Haibin,LI Jiabiao. Thermal modeling of the tectonic evolution of the southwest subbasin in the South China Sea[J]. Chinese Journal of Geophysics,2005,48(6):1357−1365.
[38] 唐晓音,胡圣标,张功成,等. 南海北部大陆边缘盆地地热特征与油气富集[J]. 地球物理学报,2014,57(2):572−585. TANG Xiaoyin,HU Shengbiao,ZHANG Gongcheng,et al. Geothermal characteristics and hydrocarbon accumulation of the northern marginal basins,South China Sea[J]. Chinese Journal of Geophysics,2014,57(2):572−585.
[39] WANG Jiyang. Geothermics in China[M]. Beijing:Seismological Press,1996.
[40] WANG Pinxian,LI Qianyu. The South China Sea:Paleoceanography and sedimentology[M]. Dordrecht:Springer,2009.
[41] 张健,宋海斌. 南海北部大陆架盆地热结构[J]. 地质力学学报,2001,7(3):238−244. ZHANG Jian,SONG Haibin. The thermal structure of main sedimentary basins in the northern margin of the South China sea[J]. Journal of Geomechanics,2001,7(3):238−244.
[42] XU Wei,HUANG Shaopeng,ZHANG Jiong,et al. Present-day geothermal regime of the Uliastai Depression,Erlian Basin,North China[J]. Energy Exploration & Exploitation,2019,37(2):770−786.
[43] 陈超强,何丽娟,焉力文,等. 中国陆地热岩石圈厚度及其地球动力学意义[J]. 地球物理学报,2022,65(8):3054−3063. CHEN Chaoqiang,HE Lijuan,YAN Liwen,et al. The thickness of the thermal lithosphere in mainland China and its geodynamic significance[J]. Chinese Journal of Geophysics,2022,65(8):3054−3063.
[44] 王丽君,严恒,姚意迅. 地震分频压力反演技术在莺歌海盆地DFx气田中的应用[J]. 石化技术,2020,27(11):152−153. WANG Lijun,YAN Heng,YAO Yixun. Application of the seismic dividing frequency pressure inversion technique in DFx gas field in Yinggehai Basin[J]. Petrochemical Industry Technology,2020,27(11):152−153.