含水采空区瞬变电磁时空响应特征研究及应用

宋贵磊, 公绪飞, 杨富强, 崔建廷, 李瞻领, 刘丽娜

宋贵磊,公绪飞,杨富强,等. 含水采空区瞬变电磁时空响应特征研究及应用[J]. 煤田地质与勘探,2024,52(12):201−212. DOI: 10.12363/issn.1001-1986.24.04.0247
引用本文: 宋贵磊,公绪飞,杨富强,等. 含水采空区瞬变电磁时空响应特征研究及应用[J]. 煤田地质与勘探,2024,52(12):201−212. DOI: 10.12363/issn.1001-1986.24.04.0247
SONG Guilei,GONG Xufei,YANG Fuqiang,et al. Spatiotemporal response characteristics of transient electromagnetic field in water-bearing goaves and their applications[J]. Coal Geology & Exploration,2024,52(12):201−212. DOI: 10.12363/issn.1001-1986.24.04.0247
Citation: SONG Guilei,GONG Xufei,YANG Fuqiang,et al. Spatiotemporal response characteristics of transient electromagnetic field in water-bearing goaves and their applications[J]. Coal Geology & Exploration,2024,52(12):201−212. DOI: 10.12363/issn.1001-1986.24.04.0247

 

含水采空区瞬变电磁时空响应特征研究及应用

基金项目: 国家自然科学基金项目(52374097);山东省泰山学者工程项目( tstp20221126);山东省自然科学基金项目(ZR2022ME158)
详细信息
    作者简介:

    宋贵磊,1998年生,男,山东青岛人,博士研究生。E-mail:guilei_song@163.com

    通讯作者:

    公绪飞,1988年生,男,山东临沂人,博士,讲师,硕士生导师。E-mail:gong_xufei@126.com

  • 中图分类号: P631;TD745

Spatiotemporal response characteristics of transient electromagnetic field in water-bearing goaves and their applications

  • 摘要:
    目的与方法 

    为提高矿井瞬变电磁法对煤矿含水采空区的成像精度,基于高家梁煤矿地质条件,通过COMSOL有限元软件模拟不同层间距含水采空区模型的感应电磁场时空响应特征,分析其在视电阻率拟断面图及视纵向电导微分图分布规律;在鄂尔多斯高家梁煤矿开展了实地探测,成功识别出采空区含水情况。

    结果和结论 

    结果表明:感应磁场在含水体内衰减速度慢于岩层内,电压衰减曲线可随时间的推移分为初始稳定衰减、相对缓慢衰减、相对快速衰减和最终稳定衰减4个阶段;层间距越小,初始稳定衰减阶段到相对缓慢衰减的转折点出现时间越早,相对缓慢衰减和相对快速衰减阶段持续时间越长,感应电压越大;磁感应强度最大值通常出现在含水采空区内,且随层间距增大线性减小;视纵向电导二阶微分能有效分辨高阻−低阻交界面,且层间距越小视纵向电导微分幅值越大;在高家梁煤矿20302和20313工作面采空区积水探测中,感应电压衰减转折点分别出现在718.51 μs和1 004.31 μs,根据相邻测道电压及视纵向电导微分变化,判断出积水横向分别分布在36~120 m和24~168 m,岩−水交界面分别出现在66 m和72 m处,并经钻探得到验证。研究结果可为矿井老空水探测及疏放提供指导,并对矿井安全生产具有重要意义。

    Abstract:
    Objective and Methods 

    This study aims to enhance the accuracy of the mine transient electromagnetic method (MTEM) in of imaging of water-bearing goaves. Based on the geological conditions of the Gaojialiang Coal Mine, this study simulated the spatiotemporal response characteristics of the induced magnetic field in the water-bearing goaf model under varying stratigraphic spacings using finite element software COMSOL. Accordingly, this study analyzed the distribution patterns of the induced magnetic field on the apparent resistivity pseudosections and the plots of the differentials of longitudinal apparent conductivity. Using the results, the water-bearing conditions of goaves in the Ordos Gaojialiang Coal Mine were successfully identified during field detection.

    Results and Conclusions 

    The results indicate that the induced magnetic field in water-bearing bodies exhibited lower decay rates than that in rock layers. The time-varying voltage decay curves can be divided into four distinct stages: the initial stable, relatively slow, relatively rapid, and final stable decay stages sequentially. A greater stratigraphic spacing was associated with an earlier turning point between the initial stable and relatively slow decay stages, longer relatively slow and relatively rapid decay stages, and higher induced voltage. The maximum magnetic induction frequently occurred within the water-bearing goaves, decreasing linearly with an increase in the stratigraphic spacing. The second-order differentials of longitudinal apparent conductivity can effectively identify interfaces between high and low resistivity, with a smaller stratigraphic spacing corresponding to a higher amplitude of the second-order differentials. In the water detection of goaves along mining faces 20302 and 20313 in the Gaojialiang Coal Mine, the turning points of induced-voltage decay occurred at 718.51 μs and 1004.31 μs, respectively. The variations in the voltages between adjacent channels and the second-order differentials of longitudinal apparent conductivity reveal that water accumulation occurred at depths ranging from 36 to 120 m and from 24 to 168 m, respectively laterally and the rock-water interfaces were located at depths of 66 m and 72 m, respectively. These findings were verified through drilling. The results of this study can serve as a guide for water detection and drainage in goaves and hold great significance for ensuring the safe production of mines.

  • 图  1   矿井瞬变电磁探测原理

    Fig.  1   Principle of MTEM

    图  2   高家梁煤矿地质柱状图及电阻率曲线

    Fig.  2   Geological column and resistivity curve of the Gaojialiang Coal Mine

    图  3   模型及设计

    Fig.  3   Model and design

    图  4   数值模拟方案

    Fig.  4   Numerical simulation scheme

    图  5   不同时刻地层磁感应强度

    Fig.  5   Magnetic induction of the strata at different moments

    图  6   t=1 000 μs时不同层间距磁感应强度

    Fig.  6   Magnetic induction under varying stratigraphic spacings at t=1 000 μs

    图  7   磁感应强度及增幅

    Fig.  7   Magnetic field strength and its increased amplitude

    图  8   感应电压衰减曲线

    Fig.  8   Induced voltage decay curves

    图  9   不同层间距感应电压多测道图

    Fig.  9   Multi-channel induced voltage under various stratigraphic spacings

    图  10   不同层间距视电阻率拟断面图

    Fig.  10   Apparent resistivity pseudosections under varying stratigraphic spacings

    图  11   不同层间距视纵向电导微分结果

    Fig.  11   Differentials of longitudinal apparent conductivity under varying stratigraphic spacings

    图  12   YCS200(A)矿用瞬变电磁仪

    Fig.  12   YCS200(A) transient electromagnetic instrument for mining

    图  13   30203工作面顶板地质情况及探测方案

    Fig.  13   Geological conditions and detection scheme of the roof of mining face 30203

    图  14   20302工作面采空区瞬变电磁探测成果

    Fig.  14   MTEM results of goaf on mining face 20302

    图  15   T6钻孔设计

    Fig.  15   Design of borehole T6

    图  16   40204工作面顶板地质情况及探测方案

    Fig.  16   Geological conditions and detection scheme of the roof of mining face 40204

    图  17   20313工作面采空区瞬变电磁探测成果

    Fig.  17   MTEM results of goaves on mining face 20313

    图  18   T12钻孔设计

    Fig.  18   Design of borehole T12

  • [1] 张继锋,孙乃泉,刘最亮,等. 电磁法在煤矿水害隐患探测方面的综述[J]. 煤田地质与勘探,2023,51(2):301−316. DOI: 10.12363/issn.1001-1986.22.12.0962

    ZHANG Jifeng,SUN Naiquan,LIU Zuiliang,et al. Electromagnetic methods in the detection of water hazards in coal mines:A review[J]. Coal Geology & Exploration,2023,51(2):301−316. DOI: 10.12363/issn.1001-1986.22.12.0962

    [2] 齐庆杰,孙祚,刘文岗,等. 洪水灾害诱发煤矿水害事故风险评估模型研究[J]. 煤炭科学技术,2023,51(1):395−402.

    QI Qingjie,SUN Zuo,LIU Wengang,et al. Study on risk assessment model of coal mine water accident induced by flood disaster[J]. Coal Science and Technology,2023,51(1):395−402.

    [3] 曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.

    ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14.

    [4] 吴金随,张辞源,尹尚先,等. 近20 a我国煤矿水害事故统计及分析[J]. 煤炭技术,2022,41(6):86−89.

    WU Jinsui,ZHANG Ciyuan,YIN Shangxian,et al. Statistics and analysis of coal mine water damage accidents in China in recent 20 years[J]. Coal Technology,2022,41(6):86−89.

    [5] 薛国强,李海,陈卫营,等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报,2021,46(1):77−85.

    XUE Guoqiang,LI Hai,CHEN Weiying,et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society,2021,46(1):77−85.

    [6]

    WEN Laifu,CHENG Jiulong,HUANG Shaohua,et al. Review of geophysical exploration on mined-out areas and water abundance[J]. Journal of Environmental and Engineering Geophysics,2019,24(1):129−143. DOI: 10.2113/JEEG24.1.129

    [7]

    YU Chuantao,CHEN Weiying,ZHANG Xi,et al. Review and challenges in the geophysical mapping of coal mine water structure[J]. Geofluids,2022,2022:4578072.

    [8] 张欢,彭刘亚. 矿井瞬变电磁场井下人文噪声干扰物理模拟[J]. 工程地球物理学报,2010,7(6):679−683. DOI: 10.3969/j.issn.1672-7940.2010.06.006

    ZHANG Huan,PENG Liuya. Effect of human noise of physical simulation experiments on mine transient electromagnetic surveying[J]. Chinese Journal of Engineering Geophysics,2010,7(6):679−683. DOI: 10.3969/j.issn.1672-7940.2010.06.006

    [9] 孙怀凤,李貅,卢绪山,等. 隧道强干扰环境瞬变电磁响应规律与校正方法:以TBM为例[J]. 地球物理学报,2016,59(12):4720−4732. DOI: 10.6038/cjg20161231

    SUN Huaifeng,LI Xiu,LU Xushan,et al. Transient electromagnetic responses in tunnels with strong interferences and the correcting method:A TBM example[J]. Chinese Journal of Geophysics,2016,59(12):4720−4732. DOI: 10.6038/cjg20161231

    [10] 范涛,赵兆,吴海,等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究[J]. 煤炭学报,2014,39(5):932−940.

    FAN Tao,ZHAO Zhao,WU Hai,et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops[J]. Journal of China Coal Society,2014,39(5):932−940.

    [11] 姜国庆,程久龙,孙晓云,等. 全空间瞬变电磁全区视电阻率优化二分搜索算法[J]. 煤炭学报,2014,39(12):2482−2488.

    JIANG Guoqing,CHENG Jiulong,SUN Xiaoyun,et al. Optimized binary search algorithm of full space transient electromagnetic method all-time apparent resistivity[J]. Journal of China Coal Society,2014,39(12):2482−2488.

    [12] 杨海燕,邓居智,张华,等. 矿井瞬变电磁法全空间视电阻率解释方法研究[J]. 地球物理学报,2010,53(3):651−656.

    YANG Haiyan,DENG Juzhi,ZHANG Hua,et al. Research on full-space apparent resistivity interpretation technique in mine transient electromagnetic method[J]. Chinese Journal of Geophysics,2010,53(3):651−656.

    [13] 于景邨. 矿井瞬变电磁法勘探[M]. 徐州:中国矿业大学出版社,2007.
    [14] 刘最亮,王鹤宇,冯兵,等. 基于电性标志层识别的瞬变电磁精准处理技术[J]. 煤炭学报,2019,44(8):2346−2355.

    LIU Zuiliang,WANG Heyu,FENG Bing,et al. TEM data accurate processing technology based on electrical marker layer[J]. Journal of China Coal Society,2019,44(8):2346−2355.

    [15] 苏茂鑫,李术才,薛翊国,等. 隧道地质预报中的瞬变电磁视纵向电导解释方法研究[J]. 岩土工程学报,2010,32(11):1722−1726.

    SU Maoxin,LI Shucai,XUE Yiguo,et al. TEM longitudinal apparent conductivity interpretation in tunnel geological forecast[J]. Chinese Journal of Geotechnical Engineering,2010,32(11):1722−1726.

    [16] 张军,马索尼,李貅. 瞬变电磁微分电导深度校正技术研究[J]. 工程地球物理学报,2015,12(4):438−444. DOI: 10.3969/j.issn.1672-7940.2015.04.003

    ZHANG Jun,MA Suoni,LI Xiu. A study on differential conductance depth correction based on TEM[J]. Chinese Journal of Engineering Geophysics,2015,12(4):438−444. DOI: 10.3969/j.issn.1672-7940.2015.04.003

    [17] 马劼,李貅,戚志鹏,等. 瞬变电磁虚拟波场层状Green函数Born近似成像方法[J]. 地球物理学报,2023,66(6):2631−2645. DOI: 10.6038/cjg2022Q0356

    MA Jie,LI Xiu,QI Zhipeng,et al. Layered Green function Born approximation imaging method for transient electromagnetic virtual wave fields[J]. Chinese Journal of Geophysics,2023,66(6):2631−2645. DOI: 10.6038/cjg2022Q0356

    [18] 范克睿,王刚,鲁凯亮,等. 虚拟波场降速条件下电性源瞬变电磁垂直磁场分量的波场反变换方法[J]. 地球物理学报,2023,66(4):1743−1757. DOI: 10.6038/cjg2022P0796

    FAN Kerui,WANG Gang,LU Kailiang,et al. Inverse wavefield transform of vertical magnetic signal of galvanic source TEM when slowing down pseudo-wavefield velocity[J]. Chinese Journal of Geophysics,2023,66(4):1743−1757. DOI: 10.6038/cjg2022P0796

    [19] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141. DOI: 10.3969/j.issn.1001-1986.2016.06.025

    CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141. DOI: 10.3969/j.issn.1001-1986.2016.06.025

    [20]

    QI Zhipeng,ZHANG Yingying,LI Xiu,et al. S-Inversion of electrical source semi-airborne TEM data to determine the electric interface underground[J]. Journal of Applied Geophysics,2022,204:104744. DOI: 10.1016/j.jappgeo.2022.104744

    [21] 翟明华,孙怀凤,范建国,等. 瞬变电磁超前探视纵向电导微分合成孔径成像[J]. 中国矿业大学学报,2019,48(2):422−429.

    ZHAI Minghua,SUN Huaifeng,FAN Jianguo,et al. Synthetic aperture algorithm imaging of differential longitudinal apparent conductivity in tunnel transient electromagnetic prediction[J]. Journal of China University of Mining & Technology,2019,48(2):422−429.

    [22]

    QI Tingye,ZHANG Fan,PEI Xiaoming,et al. Simulation research and application on response characteristics of detecting water-filled goaf by transient electromagnetic method[J]. International Journal of Coal Science & Technology,2022,9(1):17.

    [23] 叶琼瑶,张军,赵友超,等. 岩溶隧道勘察接地源半航空瞬变电磁三维响应规律研究[J]. 应用基础与工程科学学报,2021,29(5):1108−1123.

    YE Qiongyao,ZHANG Jun,ZHAO Youchao,et al. Study on the three-dimensional response law of semi-airborne transient electromagnetic of grounding source for Karst tunnel investigation[J]. Journal of Basic Science and Engineering,2021,29(5):1108−1123.

    [24] 孙怀凤,吴启龙,陈儒军,等. 浅层岩溶瞬变电磁响应规律试验研究[J]. 岩石力学与工程学报,2018,37(3):652−661.

    SUN Huaifeng,WU Qilong,CHEN Rujun,et al. Experimental study on transient electromagnetic responses to shallow Karst[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):652−661.

    [25] 牛之琏. 时间域电磁法原理[M]. 长沙:中南大学出版社,2007.
    [26] 胡雄武,张平松,严家平,等. 矿井瞬变电磁超前探测视电阻率扩散叠加解释方法[J]. 煤炭学报,2014,39(5):925−931.

    HU Xiongwu,ZHANG Pingsong,YAN Jiaping,et al. Spread stack interpretation means of apparent resistivity in roadway advanced detection with transient electromagnetic method[J]. Journal of China Coal Society,2014,39(5):925−931.

    [27] 胡雄武,陈人峻,张平松,等. 瞬变电磁共中心零磁通线圈研制与试验[J]. 煤炭学报,2023,48(2):918−930.

    HU Xiongwu,CHEN Renjun,ZHANG Pingsong,et al. Development and experiment of transient electromagnetic common centerzero-flux coil[J]. Journal of China Coal Society,2023,48(2):918−930.

    [28] 曹华科,戚志鹏,李貅,等. 考虑关断时间的瞬变电磁视电阻率计算及不同波形浅层分辨特征分析[J]. 地球物理学进展,2022,37(4):1704−1716. DOI: 10.6038/pg2022FF0562

    CAO Huake,QI Zhipeng,LI Xiu,et al. Transient electromagnetic apparent resistivity calculation considering turn-off time and shallow resolution analysis of different waveforms[J]. Progress in Geophysics,2022,37(4):1704−1716. DOI: 10.6038/pg2022FF0562

    [29] 杨海燕,岳建华,李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报,2019,62(9):3615−3628. DOI: 10.6038/cjg2019M0341

    YANG Haiyan,YUE Jianhua,LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Chinese Journal of Geophysics,2019,62(9):3615−3628. DOI: 10.6038/cjg2019M0341

    [30] 李飞,程久龙,温来福,等. 矿井瞬变电磁法电阻率偏低原因分析与校正方法[J]. 煤炭学报,2018,43(7):1959−1964.

    LI Fei,CHENG Jiulong,WEN Laifu,et al. Reason and correction of low resistivity problem in mine transient electro-magnetic method[J]. Journal of China Coal Society,2018,43(7):1959−1964.

    [31] 张军. 矿井超浅层高分辨率瞬变电磁探测技术[J]. 煤田地质与勘探,2020,48(4):219−225. DOI: 10.3969/j.issn.1001-1986.2020.04.030

    ZHANG Jun. The high-resolution transient electromagnetic detection technology for ultra-shallow layer in coal mine[J]. Coal Geology & Exploration,2020,48(4):219−225. DOI: 10.3969/j.issn.1001-1986.2020.04.030

  • 期刊类型引用(17)

    1. 王淑璇,王强民,曹煜,王浩. 榆横矿区典型矿井含水层水力联系辨识. 能源与环保. 2025(02): 101-105+111 . 百度学术
    2. 马国逢,刘洋,杨建,王强民. 蒙陕深埋煤层首采工作面顶板富水性和涌水量差异研究. 煤炭工程. 2024(02): 87-91 . 百度学术
    3. 丁莹莹,尹尚先,连会青,卜昌森,刘伟,夏向学,周旺. 基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究. 中国安全生产科学技术. 2024(03): 110-117 . 百度学术
    4. 任海帆. 鄂尔多斯盆地煤层气开发井壁稳定性技术研究. 中国高新科技. 2024(07): 123-125 . 百度学术
    5. 邓启锐,高建峰,刘飞,徐士哲,许珂,王杰,南忠辉. 基于不完整井非稳定运动的立井井筒涌水量预测研究. 煤炭工程. 2024(08): 172-176 . 百度学术
    6. 付德渊,樊江伟,乌阳嘎,黄海鱼,白志君,李哲. 基于AHP的东胜煤田煤层顶板充水强度分区评价. 陕西煤炭. 2024(09): 58-63+99 . 百度学术
    7. 周振方,董书宁,董阳,罗生虎,薛建坤,王治宙,王淑璇,尚宏波,王甜甜,王昱同,王同. 蒙陕接壤区典型煤层开采顶板周期性变形破坏及涌水响应特征. 煤田地质与勘探. 2024(08): 101-110 . 本站查看
    8. 贾继平,李赵岩,李涛,田超超. 黄陵一号煤矿814工作面采前防治水安全评价. 陕西煤炭. 2024(10): 91-95 . 百度学术
    9. 陈云民,李媛,苏士杰,吴永辉,周新河. 基于小波变换的煤矿区地下水位动态变化特征分析. 煤炭工程. 2024(S1): 153-162 . 百度学术
    10. 杨建,王皓,王强民,张溪彧,王甜甜. 蒙陕接壤区矿井水中典型污染组分特征及来源. 煤炭学报. 2023(04): 1687-1696 . 百度学术
    11. 王林威,靖娟,尚文绣. 矿井大量涌水地区多水源联合配置. 水资源与水工程学报. 2023(03): 37-45+54 . 百度学术
    12. 刘慧,刘桂芹,宁殿艳,樊娟,陈卫明. 基于VMD-DBN的矿井涌水量预测方法. 煤田地质与勘探. 2023(06): 13-21 . 本站查看
    13. 孙刚友,胡清珍,康钦容,夏缘帝,袁威,张卫中. 基于大井法和地下水模型系统数值模拟方法的某矿坑涌水量预测对比分析. 科学技术与工程. 2023(21): 9024-9031 . 百度学术
    14. 王皓,周振方,杨建,赵春虎,曹煜,冯龙飞,尚宏波,王甜甜,王昱同,薛建坤. 蒙陕接壤区典型煤层开采地下水系统扰动的定量表征. 煤炭科学技术. 2023(07): 83-93 . 百度学术
    15. 康占忠,刘洋. 榆神矿区水文地球化学特征精细分层研究. 煤炭技术. 2022(08): 72-75 . 百度学术
    16. 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律. 煤田地质与勘探. 2022(12): 152-158 . 本站查看
    17. 周新河,翁明月,苏士杰,李广疆. 近距离煤层顶板水害立体防控技术研究——以蒙陕深部矿井为例. 煤炭科学技术. 2021(12): 165-172 . 百度学术

    其他类型引用(3)

图(18)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  5
  • PDF下载量:  19
  • 被引次数: 20
出版历程
  • 收稿日期:  2024-04-13
  • 修回日期:  2024-10-15
  • 刊出日期:  2024-12-25

目录

    /

    返回文章
    返回