基于延时微分的旋转导向工具造斜率预测方法研究

李飞, 张楠

李飞,张楠. 基于延时微分的旋转导向工具造斜率预测方法研究[J]. 煤田地质与勘探,2024,52(6):166−173. DOI: 10.12363/issn.1001-1986.24.01.0038
引用本文: 李飞,张楠. 基于延时微分的旋转导向工具造斜率预测方法研究[J]. 煤田地质与勘探,2024,52(6):166−173. DOI: 10.12363/issn.1001-1986.24.01.0038
LI Fei,ZHANG Nan. Build-up rate prediction of rotary steerable tools based on delay differentiation[J]. Coal Geology & Exploration,2024,52(6):166−173. DOI: 10.12363/issn.1001-1986.24.01.0038
Citation: LI Fei,ZHANG Nan. Build-up rate prediction of rotary steerable tools based on delay differentiation[J]. Coal Geology & Exploration,2024,52(6):166−173. DOI: 10.12363/issn.1001-1986.24.01.0038

 

基于延时微分的旋转导向工具造斜率预测方法研究

基金项目: 国家重点研发计划项目(2023YFC2810900);国家自然科学基金企业创新发展联合基金重点项目(U20B2029);陕西省重点研发计划项目(2024GX-YBXM-504);陕西秦创原“科学家+工程师”团队项目(2022kxj-125);陕西省技术创新引导专项项目(2024ZC-YYDP-22);西安石油大学研究生创新与实践能力培养计划项目(YCS23213045)
详细信息
    作者简介:

    李飞,1977年生,男,山西太原人,博士,教授,从事旋转导向系统关键技术开发. E-mail:lif@xsyu.edu.cn

  • 中图分类号: TD42

Build-up rate prediction of rotary steerable tools based on delay differentiation

  • 摘要:

    【目的】旋转导向工具造斜率的准确预测是实现工具精准控制的前提,为掌握旋转导向底部钻具组合造斜率变化规律。【方法】 根据工具结构特点,采用欧拉−伯努利梁方程法对复合式旋转导向工具底部钻具组合进行受力分析。通过结合底部钻具几何关系,得到各节工具转角与钻头预钻进偏角计算方法,并将旋转导向工具各节点与钻头间距离作为空间延时周期,最终建立基于延时微分的旋转导向底部钻具组合的造斜率预测模型。该模型综合考虑了工具本身几何尺寸与结构、与地层有关的钻头切削各向异性、钻压以及工具材料及内外径有关的抗弯刚度等参数对造斜率的定量影响。【结果和结论】研究表明:(1)该模型预测结果与斯伦贝谢成熟应用的基于有限元分析的钻具造斜率预测软件仿真结果具有良好的吻合度,预测结果差值均保持在0.5(°)/30 m以内,符合工程要求。(2)同时该方法还可在钻具姿态测量短节的实际测量数据基础上补偿钻头与测量单元间距带来的测量误差问题,为解决测量盲区提供一种新的途径。基于空间延时微分的造斜率预测方法为旋转导向系统底部钻具组合的结构优化及钻井参数优选提供理论依据和快速分析手段。建立的模型易于仿真和移植,在实际工程应用中可获取较好的实时响应,为基于数字孪生的旋转导向工具研发提供准确的钻具运动模型基础。

    Abstract:

    [Objective] Accurate build-up rate prediction of rotary steerable tools is a prerequisite to achieve the precise control of tools. In order to grasp the variation law of the build-up rate of the rotary steerable bottom-hole assembly (RSBHA). [Methods] Based on the structural charaeteristics of the tool, the Euler-Bernoulli beam equation method is used to analyz the forces outing on the composite RSBHA. At the same time, the calculation method of the tool deflection angle in different sections and the bit pre-drilling deflection angle was obtained with consideration to the geometric relationship of the bottom-hole assembly, and the distance between the connecting points of rotary steerable tool and bit was taken as the spatial delay period. Finally, a prediction model for the build-up rate of the RSBHA based on delay differentiation was established. This model comprehensively considers the qualitative influence of parameters, such as the geometric size and structure of the tool itself, the cutting anisotropy of the drill bit related to the formation, the weight on bit, and the bending stiffness related to the tool material and the inner and outer diameters, on the build-up rate. [Results and Conclusions] The study shows that: (1) The predicted results of this model are in good agreement with the simulation results of Schlumberger's mature build-up rate prediction software based on the finite element analysis, and the difference between the predicted results is maintained within 0.5 (°)/30 m, which meets the engineering requirements. (2) This method can also compensate for the measurement error caused by the distance between the drill bit and the measurement unit based on the actual measurement data of the drilling tool attitude gauging nipple, providing a new way to solve the problem of unmeasurable are. This build-up rate prediction method based on spatial delay differentiation provides theoretical basis and rapid analysis means to optimize the structure of RSBHA and the drilling parameters. The established model is easy to simulate and transplant, and can obtain good real-time response in practical engineering applications, which provides an accurate foundation of drilling tool movement model for the development of rotary steerable tools based on digital twins.

  • 图  1   复合式RSBHA结构

    Fig.  1   Hybrid RSBHA structure

    图  2   简支梁在均布载荷下的形变

    Fig.  2   Deformation of a simply-supported beam under uniform load

    图  3   RSBHA某一梁受力

    Fig.  3   Stress of a RSBHA beam

    图  4   RSBHA钻进模型

    注:${L_1}$为钻头至万向节之间的工具长度,m;${L_2}$为万向节至下扶正器之间的工具长度,m;${L_3}$为上扶正器至万向节之间的工具长度,m;$ {L_4} $为上扶正器至挠性接头之间的工具长度,m;${L_5}$为下一节钻柱长度,m;$p$为沿轴向施加在RSBHA端部的钻压,kN;${S_2}$、${S_3}$为扶正器与井眼的间隙,cm;${F_{\text{s}}}$为导向单元液压模块推出后,以下扶正器为支点造斜时所受到的等效推靠力,kN。

    Fig.  4   RSBHA drilling model

    图  5   RSBHA受力分析

    注:${M_{\text{j}}}$、$ {M_{\text{f}}} $为万向节处与挠性接头处的弯矩,N·m;${p_{\text{b}}}$、${p_{\text{j}}}$分别为钻头处钻压与万向节处钻压,kN。

    Fig.  5   Stress analysis of RSBHA

    图  6   造斜率预测仿真模型

    注:0、1、2、3、4为输入或输出端口编号。

    Fig.  6   Simulation model for prediction of build-up rate

    图  7   造斜率与井斜角计算结果曲线

    Fig.  7   Calculation results of build-up rate and hole inclination angle

    图  8   相同参数下有限元分析软件造斜率预测结果

    Fig.  8   Build-up rate prediction results using finite element analysis software under the same parameters

    图  9   相同参数下有限元分析软件井斜角变化曲线

    Fig.  9   Variation of hole inclination angle using finite element analysis software under the same parameters

    图  10   不同参数下本模型与有限元模型造斜率结果对比

    Fig.  10   Comparison of build-up rate results between this model and the finite element model under different parameters

    图  11   变参数对造斜率影响

    Fig.  11   Influence of variable parameters on build-up rate

    表  1   系统中RSBHA各部分长度

    Table  1   Length of each part of RSBHA in the system

    RSBHA不同单元长度/m 数值
    钻头至万向节 0.64
    万向节至下扶正器 0.24
    上扶正器至万向节 4.27
    上扶正器到挠性接头 6.1
    下一节钻柱 9.1
    下载: 导出CSV

    表  2   工具特性与钻井参数

    Table  2   Tool characteristics and drilling parameters

    工具特性与钻井参数 数值
    钻头各向异性Ka 1/30
    抗弯刚度/(N·m−2) 685000
    等效推靠力Fs/kN 22.78
    钻压p/kN 100
    下扶正器与井眼间隙S2/cm 0.16
    上扶正器与井眼间隙S3/cm 0.16
    下载: 导出CSV
  • [1] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979−1007. DOI: 10.3969/j.issn.0001-5717.2015.06.001

    ZOU Caineng,YANG Zhi,ZHU Rukai,et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica,2015,89(6):979−1007. DOI: 10.3969/j.issn.0001-5717.2015.06.001

    [2] 李国欣,雷征东,董伟宏,等. 中国石油非常规油气开发进展、挑战与展望[J]. 中国石油勘探,2022,27(1):1−11. DOI: 10.3969/j.issn.1672-7703.2022.01.001

    LI Guoxin,LEI Zhengdong,DONG Weihong,et al. Progress,challenges and prospects of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration,2022,27(1):1−11. DOI: 10.3969/j.issn.1672-7703.2022.01.001

    [3]

    GRUSHECKY S T,HARRIS K J,STRAGER M P,et al. Land cover change associated with unconventional oil and gas development in the Appalachian Region[J]. Environmental Management,2022,70(5):869−880. DOI: 10.1007/s00267-022-01702-y

    [4]

    WANG Heng,GUAN Z,SHI Yu,et al. Study on build-up rate of push-the-bit rotary steerable bottom hole assembly[J]. Journal of Applied Science and Engineering,2017,20(3):401−408

    [5]

    PHAN V C, AL F A, GONZALES L F, et al. Transforming the trajectory control from conventional motor drilling to autonomous rotary steerable systems[C]//Offshore Technology Conference,May 1-4,2023,Houston,TX. Houston:OTC,c2023:32592.

    [6] 黎伟,牟磊,周贤成,等. 旋转导向系统及其控制方法研究进展[J]. 煤田地质与勘探,2023,51(10):167−179. DOI: 10.12363/issn.1001-1986.23.03.0137

    LI Wei,MOU Lei,ZHOU Xiancheng,et al. Research progress of rotary steerable system and its control methods[J]. Coal Geology & Exploration,2023,51(10):167−179. DOI: 10.12363/issn.1001-1986.23.03.0137

    [7] 张鑫鑫,梁博文,张晓龙,等. 智能钻井装备与技术研究进展[J]. 煤田地质与勘探,2023,51(9):20−30. DOI: 10.12363/issn.1001-1986.23.06.0324

    ZHANG Xinxin,LIANG Bowen,ZHANG Xiaolong,et al. Research progress of intelligent drilling equipment and technology[J]. Coal Geology & Exploration,2023,51(9):20−30. DOI: 10.12363/issn.1001-1986.23.06.0324

    [8] 菅志军,尚捷,彭劲勇,等. Welleader及Drilog系统在渤海油田的应用[J]. 石油矿场机械,2017,46(6):57−62. DOI: 10.3969/j.issn.1001-3482.2017.06.012

    JIAN Zhijun,SHANG Jie,PENG Jinyong,et al. Application of welleader & drilog system in the Bohai oilfield[J]. Oil Field Equipment,2017,46(6):57−62. DOI: 10.3969/j.issn.1001-3482.2017.06.012

    [9] 曲艺. 我国首条“璇玑”系统“智造链”建成投产[N]. 中国电力报,2022-04-21.
    [10] 冯定,王鹏,张红,等. 旋转导向工具研究现状及发展趋势[J]. 石油机械,2021,49(7):8−15.

    FENG Ding,WANG Peng,ZHANG Hong,et al. Research status and development trend of rotary steerable system tool[J]. China Petroleum Machinery,2021,49(7):8−15.

    [11]

    PERNEDER L,MARCK J,DETOURNAY E. A model of planar borehole propagation[J]. SIAM Journal on Applied Mathematics,2017,77(4):1089−1114. DOI: 10.1137/16M1094518

    [12]

    IGNOVA M,MONTOIS M,MANTLE K. An automated trajectory control for drilling operations[C]//Society of Petroleum Engineers March 18-21, 2019. Manama, Bahrain. Richardson: SPE,c2019:194727.

    [13] 王恒. 静态推靠式旋转导向BHA力学特性及钻进趋势研究[D]. 东营:中国石油大学(华东),2019.

    WANG Heng. Study on the mechanical characteristics and drilling tendency of a static push-the-bit rotary steerable BHA[D]. Dongying:China University of Petroleum (Huadong),2019.

    [14]

    KARLSSON H,BRASSFIELD T. Performance drilling optimization[C]//Society of Petroleum Engineers, March 6-8, 1985, New Orleans,Louisiana. Richardson:SPE,c1985:13474.

    [15] 刘修善,何树山,邹野. 导向钻具几何造斜率的研究[J]. 石油学报,2004,25(6):83−87. DOI: 10.3321/j.issn:0253-2697.2004.06.017

    LIU Xiushan,HE Shushan,ZOU Ye. Study on the geometric build angle rate of steerable motor[J]. Acta Petrolei Sinica,2004,25(6):83−87. DOI: 10.3321/j.issn:0253-2697.2004.06.017

    [16]

    MARCHAND N,KALANTARI M. A new approach for build rate estimation of downhole motors[C]//Society of Petroleum Engineers,September 30-October 2, 2013, New Orleans, Louisiana. Richardson:SPE,c2013:166457.

    [17] 苏义脑. 求解井底钻具组合大变形的纵横弯曲法及其在导向钻具组合分析中的应用[J]. 石油钻采工艺,1994,16(6):1−6.

    SU Yinao. Solution of bha under large deformation by beam-column theory and its use in stearable bha analysis[J]. Oil Drilling & Production Technology,1994,16(6):1−6.

    [18] 史玉才,管志川,赵洪山,等. 底部钻具组合造斜率预测新方法[J]. 中国石油大学学报(自然科学版),2017,41(1):85−89.

    SHI Yucai,GUAN Zhichuan,ZHAO Hongshan,et al. A new method for build-up rate prediction of bottom-hole assembly in well drilling[J]. Journal of China University of Petroleum (Edition of Natural Science),2017,41(1):85−89.

    [19]

    DOWNTON G C. Systems modeling and design of automated-directional-drilling systems[J]. SPE Drilling & Completion,2015,30(3):212−232.

    [20]

    CHEN D. Developing and field implementation of a state-of-theart BHA program[C]//Society of Petroleum Engineers,April 15-18,2007,Buenos Aires,Argentina. Richardson:SPE,c2007:107238.

    [21]

    PASTUSEK P, BRACKIN V, LUTES P. A fundamental model for prediction of hole curvature and build rates with steerable bottomhole assemblies[C]//Society of Petroleum Engineers, October 9-12,2005,Dallas,Texas. Richardson:SPE,c2005:95546.

    [22]

    IGNOVA M,MANTLE K,BROVKO K,et al. Downhole trajectory automation of RSS tools: Autonomous drilling becomes reality[C]//Society of Petroleum Engineers, March 7-9, 2023,Stavanger,Norway. Richardson:SPE,c2023:212519.

    [23] 王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,41(4):505−512. DOI: 10.7623/syxb202004013

    WANG Minsheng,GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica,2020,41(4):505−512. DOI: 10.7623/syxb202004013

    [24] 夏焱,管志川,史玉才. 底部钻具组合参数设计的评价方法[J]. 石油大学学报(自然科学版),2005,29(4):48−51.

    XIA Yan,GUAN Zhichuan,SHI Yucai. Evaluation method of parameters design for bottom hole assembly[J]. Journal of the University of Petroleum,China,2005,29(4):48−51.

    [25] 王恒,孙明光,张进双,等. 静态推靠式旋转导向工具造斜率预测分析[J]. 石油机械,2021,49(2):15−21.

    WANG Heng,SUN Mingguang,ZHANG Jinshuang,et al. Buildup rate prediction of a static push-the-bit rotary steerable tool[J]. China Petroleum Machinery,2021,49(2):15−21.

    [26] 贾建波,兰洪波,菅志军,等. 475型静态推靠式旋转导向钻具组合的弯曲应力分布规律[J]. 地球物理学报,2023,66(1):95−100. DOI: 10.6038/cjg2022Q0507

    JIA Jianbo,LAN Hongbo,JIAN Zhijun,et al. Bending stress distribution rules of the 475 static push-the-bit Rotary Steerable Bottom-Hole Assembly (RSBHA)[J]. Chinese Journal of Geophysics,2023,66(1):95−100. DOI: 10.6038/cjg2022Q0507

    [27] 孔锦炜. 旋转导向钻井系统及其控制方法研究进展[J]. 石化技术,2024,31(3):211−213. DOI: 10.3969/j.issn.1006-0235.2024.03.072

    KONG Jinwei. Research progress on rotary steering drilling system and its control methods[J]. Petrochemical Industry Technology,2024,31(3):211−213. DOI: 10.3969/j.issn.1006-0235.2024.03.072

    [28]

    SHAKIB M F,DETOURNAY E,VAN DE WOUW N. Nonlinear dynamic modeling and analysis of borehole propagation for directional drilling[J]. International Journal of Non-Linear Mechanics,2019,113:178−201. DOI: 10.1016/j.ijnonlinmec.2019.01.014

    [29]

    BRÖSE C,SIDERIS S A,TSAKMAKIS C,et al. Equivalent formulations of Euler–bernoulli beam theory for a simple gradient elasticity law[J]. Journal of Engineering Mechanics,2023,149(1):1−11.

    [30] 郑雪瑶,周博,薛世峰. 基于修正偶应力理论的Euler-Bernoulli微梁的尺寸效应研究[J]. 应用力学学报,2019,36(6):1442−1450.

    ZHENG Xueyao,ZHOU Bo,XUE Shifeng. Study on the size effect of Euler-Bernoulli micro-beam based on modified couple stress theory[J]. Chinese Journal of Applied Mechanics,2019,36(6):1442−1450.

    [31]

    MATHEUS J,IGNOVA M,HORNBLOWER P. A hybrid approach to closed-loop directional drilling control using rotary steerable systems[J]. IFAC Proceedings Volumes,2012,45(8):84−89. DOI: 10.3182/20120531-2-NO-4020.00008

图(11)  /  表(2)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  6
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-05-09
  • 网络出版日期:  2024-05-30
  • 刊出日期:  2024-06-24

目录

    /

    返回文章
    返回