富油煤焦油产率测井评价方法研究

田瀚, 李宁, 王双明, 武宏亮, 冯周, 王克文, 王贵文

田瀚,李宁,王双明,等. 富油煤焦油产率测井评价方法研究[J]. 煤田地质与勘探,2024,52(7):97−107. DOI: 10.12363/issn.1001-1986.23.12.0844
引用本文: 田瀚,李宁,王双明,等. 富油煤焦油产率测井评价方法研究[J]. 煤田地质与勘探,2024,52(7):97−107. DOI: 10.12363/issn.1001-1986.23.12.0844
TIAN Han,LI Ning,WANG Shuangming,et al. A log-based method for evaluating the tar yield of tar-rich coal[J]. Coal Geology & Exploration,2024,52(7):97−107. DOI: 10.12363/issn.1001-1986.23.12.0844
Citation: TIAN Han,LI Ning,WANG Shuangming,et al. A log-based method for evaluating the tar yield of tar-rich coal[J]. Coal Geology & Exploration,2024,52(7):97−107. DOI: 10.12363/issn.1001-1986.23.12.0844

 

富油煤焦油产率测井评价方法研究

基金项目: 中国石油“十四五”基础性前瞻性科技项目(2021DJ3805)
详细信息
    作者简介:

    田瀚,1989年生,男,湖北黄冈人,博士研究生,高级工程师,从事复杂储层测井处理技术与综合解释评价研究工作. E-mail:tianh_hz@petrochina.com.cn

    通讯作者:

    王贵文,1966年生,男,山西大同人,博士,教授,博士生导师,从事沉积学、储层地质学与测井地质学方面的教学与科研工作. E-mail:wanggw@cup.edu.cn

  • 中图分类号: P618.11

A log-based method for evaluating the tar yield of tar-rich coal

  • 摘要:
    目的 

    富油煤作为一种集煤、油、气属性为一体的煤基油气资源,对于保障我国油气资源供应、实现煤炭清洁高效利用具有重要意义。目前富油煤的识别主要依靠格金干馏试验测量的焦油产率来判断,而利用地球物理手段准确识别与评价富油煤的研究则相对薄弱。

    方法 

    以新疆三塘湖盆地侏罗系西山窑组和八道湾组煤层为研究对象,基于岩石物理实验,在明确富油煤典型测井响应特征基础上,创新建立了一种煤焦油产率测井定量评价方法。

    结果和结论 

    结果表明:(1) 相比含油煤,富油煤具有富氢结构物质含量高、孔隙结构差的特点,这造成富油煤具有“低密度、高中子和高电阻率”的常规测井响应特征;(2) 通过多状态二维核磁共振实验测量分析,明确了富油煤具有“二维核磁T1谱双峰,T2<1、T1/ T2>10区域信号强”的核磁测井响应特征,而含油煤相应区域信号不明显,这与富油煤中富氢结构物质含量高有关;(3) 基于富油煤典型测井响应特征,提出利用电阻率和中子2个参数构建富油煤指示因子ZZ越大,表明煤焦油产率越高。在煤焦油产率刻度基础上,建立了煤焦油产率与指示因子间的线性关系,实现了煤焦油产率的准确方便计算,可操作性强。上述认识为基于地球物理测井手段识别和评价富油煤提供了理论指导。

    Abstract:
    Objective 

    As a kind of coal-based oil and gas resource, tar-rich coal is significant for the supply of oil and gas resources, as well as the clean and efficient utilization of coals. Presently, the identification of tar-rich coals primarily depends on the Gray-King assay. In contrast, there is a lack of studies on the accurate identification and evaluation of tar-rich coal using geophysical methods.

    Methods 

    This study investigated coals in the Jurassic Xishanyao and Badaowan Formations in Santanghu Basin, Xinjiang. Based on petrophysical experiments, as well as the typical log response characteristics of tar-rich coal, this study developed a new log-based method for quantitatively evaluating the tar yield of tar-rich coal.

    Results and Conclusions 

    Key findings are as follows: (1) Compared to tar-bearing coal, tar-rich coal features a high content of materials with hydrogen-rich structures and unfavorable pore structures, which contribute to the log response characteristics of low density, high compensated neutron logging, and high resistivity. (2) The multistate 2D NMR experiments reveal that tar-rich coal is characterized by double peaks of the T1 spectrum and strong signals in zones with T2<1 and T1/T2>10, while oil-rich coal shows insignificant singles in these zones. This contrast is related to the high content of materials with hydrogen-rich structures in tar-rich coal. (3) Based on the log response characteristics of tar-rich coal, this study established indicator Z for tar-rich coal using resistivity and neutron log curves, with a higher Z value indicating higher tar yield of the coal. Building on tar yield calibration, this study determined the linear relationship between the coal tar yield and Z, achieving the accurate, convenient, and practical calculation of the tar yield of tar-rich coal. The above understanding offers theoretical guidance for identifying and evaluating tar-rich coal based on geophysical logs.

  • 图  1   典型煤样特征及显微组分

    Fig.  1   Characteristics and maceral components of coal samples

    图  2   煤真密度与焦油产率关系

    Fig.  2   Relationship between the true density and tar yield of coals

    图  3   煤灰分产率与焦油产率、真密度关系

    Fig.  3   Relationships of ash yield with tar yield and true density of coals

    图  4   煤的H/C与焦油产率、真密度关系

    Fig.  4   Relationships of H/C with tar yield and true density of coals

    图  5   煤深侧向电阻率值与焦油产率关系

    Fig.  5   Relationship between the laterolog resistivity and tar yield of coals

    图  6   不同煤孔隙结构特征对比

    Fig.  6   Comparison of the pore structure characteristics of different types of coals

    图  7   煤电阻增大率与含水饱和度关系

    Fig.  7   Relationship between the resistivity increasing rate and water saturation of coals

    图  8   不同煤二维核磁T1-T2特征

    Fig.  8   2D NMR experiments-derived T1-T2 spectra of different types of coals

    图  9   不同状态下富油煤和含油煤二维核磁T1-T2谱图特征

    Fig.  9   2D NMR experiments-derived T1-T2 spectra of tar-rich and tar-bearing coals under different states

    图  10   X1井西山窑组富油煤层识别与焦油产率计算

    Fig.  10   Tar-rich coal seam identification and tar yield calculation of the Xishanyao Formation in well X1

    图  11   X2井八道湾组富油煤层识别与焦油产率计算

    Fig.  11   Tar-rich coal seam identification and tar yield calculation of the Badaowan Formation in well X2

    表  1   煤的基础数据

    Table  1   Basic data of coal samples

    样品
    编号
    工业分析w/% 元素分析w/% 低温干馏成分质量分数/% 真密度/
    (g·cm−3)
    Mad Ad Vdaf FCad Cd Hd Nd Od 水分 焦油产率 半焦产率
    C1 10.77 7.58 32.35 55.79 75.04 3.86 0.63 12.75 16.5 3.9 68.7 1.45
    C2 12.36 2.21 38.23 52.94 77.91 4.85 0.88 13.99 18.0 6.8 62.8 1.38
    C3 8.77 4.03 50.44 43.39 74.03 5.77 0.77 15.26 11.0 18.7 57.9 1.29
    C4 7.12 2.33 53.40 42.28 76.46 6.03 0.76 14.27 13.0 16.2 57.0 1.25
    C5 6.00 6.45 55.01 39.56 74.11 6.06 0.81 12.37 14.0 16.9 55.4 1.27
    C6 7.72 2.08 52.17 43.22 76.55 5.92 0.76 14.56 14.5 17.5 55.3 1.31
    C7 5.92 2.44 57.70 40.12 77.51 6.68 0.83 12.39 12.5 22.5 52.3 1.24
    C8 5.24 6.67 60.56 38.45 73.81 6.18 0.87 12.25 11.5 21.9 53.7 1.29
    C9 10.24 4.61 28.10 61.56 76.74 3.32 0.69 14.52 16.5 1.7 70.1 1.52
    C10 8.27 3.70 29.77 62.04 76.57 3.66 0.70 15.24 15.5 2.2 69.7 1.50
    C11 7.97 2.91 31.72 61.01 76.74 3.87 0.83 15.49 15.0 2.2 70.7 1.48
    C12 9.54 5.81 32.19 57.78 73.96 3.69 0.82 15.51 17.0 3.0 68.4 1.49
    C13 4.21 1.57 50.19 46.97 76.23 6.12 0.71 15.23 13.0 13.2 59.6 1.30
    C14 3.44 1.76 51.55 45.96 75.58 5.97 0.77 15.77 13.0 13.0 60.1 1.32
    C15 2.66 2.75 61.74 36.22 75.79 7.29 2.85 13.05 11.5 23.8 50.4 1.26
    下载: 导出CSV

    表  2   不同煤样品实验分析数据及对应测井参数值

    Table  2   Experimental data and corresponding log parameter values for different types of coal samples

    样品编号 煤类型 焦油产率Tarad/% 氢质量分数/% 水分质量分数/% 孔隙率φ/% 电阻率值RT/(Ω·m) 中子值CNL/%
    C1 含油煤 3.9 3.86 10.77 22.4 150 55
    C2 含油煤 6.8 4.85 12.36 21.0 1770 58
    C3 富油煤 18.7 5.77 8.77 17.6 114500 63
    C4 富油煤 16.2 6.03 7.12 14.7 150000 65
    下载: 导出CSV

    表  3   不同煤样品MAPS图像分析结果

    Table  3   Analytical results of MAPS images for different types of coal samples

    样品
    编号
    煤类型 总孔隙
    面孔率/%
    有机孔隙
    面孔率/%
    有机裂缝
    面孔率/%
    有机质
    体积分数/%
    C1 含油煤 12.25 6.44 5.81 85.71
    C3 富油煤 0.71 0.25 0.46 98.74
    下载: 导出CSV
  • [1] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377.

    WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low–carbon of tar–rich coal as coal–based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377.

    [2] 王双明,王虹,任世华,等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学,2022,24(3):49−57. DOI: 10.15302/J-SSCAE-2022.03.006

    WANG Shuangming,WANG Hong,REN Shihua,et al. Potential analysis and technical conception of exploitation and utilization of tar–rich coal in western China[J]. Strategic Study of CAE,2022,24(3):49−57. DOI: 10.15302/J-SSCAE-2022.03.006

    [3] 师庆民,王双明,王生全,等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报,2022,47(5):2057−2066.

    SHI Qingmin,WANG Shuangming,WANG Shengquan,et al. Multi–source identification and internal relationship of tar–rich coal of the Yan’an Formation in the south of Shengfu[J]. Journal of China Coal Society,2022,47(5):2057−2066.

    [4] 东振,张梦媛,陈艳鹏,等. 三塘湖–吐哈盆地富油煤赋存特征与资源潜力分析[J]. 煤炭学报,2023,48(10):3789−3805.

    DONG Zhen,ZHANG Mengyuan,CHEN Yanpeng,et al. Analysis on the occurrence characteristics and resource potential of tar–rich coal in Santanghu and Turpan–Hami Basins[J]. Journal of China Coal Society,2023,48(10):3789−3805.

    [5] 马丽,王双明,段中会,等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探,2022,50(2):1−8. DOI: 10.12363/issn.1001-1986.21.10.0592

    MA Li,WANG Shuangming,DUAN Zhonghui,et al. Potential of oil–rich coal resources in Shaanxi Province and its new development suggestion[J]. Coal Geology & Exploration,2022,50(2):1−8. DOI: 10.12363/issn.1001-1986.21.10.0592

    [6] 谢青,李宁,姚征,等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭,2020,46(11):83−90. DOI: 10.3969/j.issn.1006-530X.2020.11.013

    XIE Qing,LI Ning,YAO Zheng,et al. Research on the tar yield characteristics and main control factors of tar–rich coal in Huangling Mining Area[J]. China Coal,2020,46(11):83−90. DOI: 10.3969/j.issn.1006-530X.2020.11.013

    [7] 王锐,夏玉成,马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术,2020,48(12):192−197.

    WANG Rui,XIA Yucheng,MA Li. Study on oil–rich coal occurrence characteristics and sedimentary environment in Yushen Mining Area[J]. Coal Science and Technology,2020,48(12):192−197.

    [8] 李华兵,李宁,姚征,等. 陕北三叠纪煤田子长矿区瓦窑堡组特高焦油产率煤富集规律分析[J]. 中国煤炭地质,2021,33(1):22−25. DOI: 10.3969/j.issn.1674-1803.2021.01.04

    LI Huabing,LI Ning,YAO Zheng,et al. Study on Wayaobu Formation extra–high tar yield coal enrichment pattern in Zichang Mining Area,Northern Shaanxi Triassic Coalfield[J]. Coal Geology of China,2021,33(1):22−25. DOI: 10.3969/j.issn.1674-1803.2021.01.04

    [9] 许婷,李宁,姚征,等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术,2022,50(3):161−168.

    XU Ting,LI Ning,YAO Zheng,et al. Distribution and geological controls of tar–rich coals in Yushen Mining Area of Northern Shaanxi[J]. Coal Science and Technology,2022,50(3):161−168.

    [10] 赵军龙,闫和平,王金锋,等. 基于测井信息的煤焦油产率预测方法研究[J]. 地球物理学进展,2023,38(4):1702−1712. DOI: 10.6038/pg2023GG0531

    ZHAO Junlong,YAN Heping,WANG Jinfeng,et al. Research on coal tar productivity prediction method based on logging information[J]. Progress in Geophysics,2023,38(4):1702−1712. DOI: 10.6038/pg2023GG0531

    [11] 李纪森. 煤层气测井技术与解释分析[J]. 测井技术,1999,23(2):103−107. DOI: 10.3969/j.issn.1004-1338.1999.02.005

    LI Jisen. Logging technology and interpretation approach for coalbed gas[J]. Well Logging Technology,1999,23(2):103−107. DOI: 10.3969/j.issn.1004-1338.1999.02.005

    [12] 潘和平. 煤层气储层测井评价[J]. 天然气工业,2005,25(3):48−51. DOI: 10.3321/j.issn:1000-0976.2005.03.014

    PAN Heping. Evaluation coalbed methane reservoir by log data[J]. Natural Gas Industry,2005,25(3):48−51. DOI: 10.3321/j.issn:1000-0976.2005.03.014

    [13] 张松杨. 煤层气地球物理测井技术现状及发展趋势[J]. 测井技术,2009,33(1):9−15. DOI: 10.3969/j.issn.1004-1338.2009.01.002

    ZHANG Songyang. Actualities and progresses of coalbed methane geophysical logging technologies[J]. Well Logging Technology,2009,33(1):9−15. DOI: 10.3969/j.issn.1004-1338.2009.01.002

    [14] 闫和平,段中会,王金锋. 黄陵矿区富油煤焦油产率与补偿密度关系模型预测方法研究[J]. 中国煤炭地质,2022,34(10):25−30. DOI: 10.3969/j.issn.1674-1803.2022.10.05

    YAN Heping,DUAN Zhonghui,WANG Jinfeng. Study on the relationship model between oil–rich coal tar yield and compensation density in Huangling Mining Area[J]. Coal Geology of China,2022,34(10):25−30. DOI: 10.3969/j.issn.1674-1803.2022.10.05

    [15] 王昌建,乔军伟. 基于BP神经网络的富油煤焦油产率预测[J]. 地质论评,2023,69(增刊1):569−572.

    WANG Changjian,QIAO Junwei. Rich coal tar yield prediction based on BP neural network[J]. Geological Review,2023,69(Sup.1):569−572.

    [16] 田瀚,冯周,王金锋,等. 陕西省煤岩焦油产率测井评价方法研究[J/OL]. 地球物理学进展,2023:1–13 [2024-03-25]. https://link.cnki.net/urlid/11.2982.P.20231109.1731.014.

    TIAN Han,FENG Zhou,WANG Jinfeng,et al. Study on logging evaluation method of coal tar yield in Shaanxi Province[J/OL]. Progress in Geophysics,2023:1–13 [2024-03-25]. https://link.cnki.net/urlid/11.2982.P.20231109.1731.014.

    [17] 李贤庆,钟宁宁,马安来,等. 三塘湖盆地侏罗纪煤系烃源岩的热演化研究[J]. 煤田地质与勘探,2003,31(1):23−26. DOI: 10.3969/j.issn.1001-1986.2003.01.008

    LI Xianqing,ZHONG Ningning,MA Anlai,et al. A study on thermal evolution of organic matter in Jurassic coal–bearing source rocks of Santanghu Basin[J]. Coal Geology & Exploration,2003,31(1):23−26. DOI: 10.3969/j.issn.1001-1986.2003.01.008

    [18] 黄卫东,李新宁,李留中,等. 三塘湖盆地煤层气资源勘探前景分析[J]. 天然气地球科学,2011,22(4):733−737.

    HUANG Weidong,LI Xinning,LI Liuzhong,et al. Prospect of coalbed methane exploration in Santanghu Basin[J]. Natural Gas Geoscience,2011,22(4):733−737.

    [19] 高绪晨,张春才,段铁梁. 煤层气测井资料解释初探[J]. 中国煤田地质,2003,15(4):54−57.

    GAO Xuchen,ZHANG Chuncai,DUAN Tieliang. Probe into interpretation on logging informations of coalbed gas[J]. Coal Geology of China,2003,15(4):54−57.

    [20] 毛志强,赵毅,孙伟,等. 利用地球物理测井资料识别我国的煤阶类型[J]. 煤炭学报,2011,36(5):766−771.

    MAO Zhiqiang,ZHAO Yi,SUN Wei,et al. Identification on the type of coal rank by using geophysical well logging data[J]. Journal of China Coal Society,2011,36(5):766−771.

    [21] 张广洋,谭学术,杜贵云,等. 煤的导电机理研究[J]. 湘潭矿业学院学报,1995,10(1):15−18.

    ZHANG Guangyang,TAN Xueshu,DU Guiyun,et al. Study on the mechanism of electricity conducting in coal[J]. Journal of Xiangtan Mining Institute,1995,10(1):15−18.

    [22] 刘之的,王伟,杨珺茹,等. 煤及煤层气储层导电特性研究综述与展望[J]. 地球物理学进展,2020,35(4):1415−1423.

    LIU Zhidi,WANG Wei,YANG Junru,et al. Review and prospect of study on conductive properties of coal and CBM reservoirs[J]. Progress in Geophysics,2020,35(4):1415−1423.

    [23] 陈鹏,王恩元,朱亚飞. 受载煤体电阻率变化规律的实验研究[J]. 煤炭学报,2013,38(4):548−553.

    CHEN Peng,WANG Enyuan,ZHU Yafei. Experimental study on resistivity variation regularities of loading coal[J]. Journal of China Coal Society,2013,38(4):548−553.

    [24] 李潮流,闫伟林,武宏亮,等. 富黏土页岩储集层含油饱和度计算方法:以松辽盆地古龙凹陷白垩系青山口组一段为例[J]. 石油勘探与开发,2022,49(6):1168−1178. DOI: 10.11698/PED.20220303

    LI Chaoliu,YAN Weilin,WU Hongliang,et al. Calculation of oil saturation in clay–rich shale reservoirs:A case study of Qing 1member of Cretaceous Qingshankou Formation in Gulong Sag,Songliao Basin,NE China[J]. Petroleum Exploration and Development,2022,49(6):1168−1178. DOI: 10.11698/PED.20220303

    [25] 谢然红,肖立志,邓克俊,等. 二维核磁共振测井[J]. 测井技术,2005,29(5):430−434.

    XIE Ranhong,XIAO Lizhi,DENG Kejun,et al. Two–dimensional NMR logging[J]. Well Logging Technology,2005,29(5):430−434.

    [26]

    KAUSIK R,FELLAH K,RYLANDER E,et al. NMR relaxometry in shale and implications for logging[J]. Petrophysics,2016,57(4):339−350.

    [27]

    SUN Yong,ZHAI Cheng,XU Jizhao,et al. A method for accurate characterization of the pore structure of a coal mass based on two–dimensional nuclear magnetic resonance T1–T2[J]. Fuel,2020,262:116574. DOI: 10.1016/j.fuel.2019.116574

    [28]

    LI Jinbu,JIANG Chunqing,WANG Min,et al. Adsorbed and free hydrocarbons in unconventional shale reservoir:A new insight from NMR T1–T2 maps[J]. Marine and Petroleum Geology,2020,116:104311. DOI: 10.1016/j.marpetgeo.2020.104311

    [29] 徐宏武. 煤层电性参数测试及其与煤岩特性关系的研究[J]. 煤炭科学技术,2005,33(3):42−46. DOI: 10.3969/j.issn.0253-2336.2005.03.012

    XU Hongwu. Measurement and test of seam electric parameter and study on relationship between seam electric parameter and coal petrology characteristics[J]. Coal Science and Technology,2005,33(3):42−46. DOI: 10.3969/j.issn.0253-2336.2005.03.012

图(11)  /  表(3)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  3
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-03-04
  • 录用日期:  2024-06-24
  • 网络出版日期:  2024-07-07
  • 刊出日期:  2024-07-24

目录

    /

    返回文章
    返回