复合关键层厚硬顶板诱冲机制与防治技术模式

郑凯歌, 袁亮, 张平松, 王林涛

郑凯歌,袁亮,张平松,等. 复合关键层厚硬顶板诱冲机制与防治技术模式[J]. 煤田地质与勘探,2024,52(10):14−24. DOI: 10.12363/issn.1001-1986.23.11.0788
引用本文: 郑凯歌,袁亮,张平松,等. 复合关键层厚硬顶板诱冲机制与防治技术模式[J]. 煤田地质与勘探,2024,52(10):14−24. DOI: 10.12363/issn.1001-1986.23.11.0788
ZHENG Kaige,YUAN Liang,ZHANG Pingsong,et al. Rock bursts induced by thick-hard roof with compound key strata: Mechanisms and technical modes for prevention[J]. Coal Geology & Exploration,2024,52(10):14−24. DOI: 10.12363/issn.1001-1986.23.11.0788
Citation: ZHENG Kaige,YUAN Liang,ZHANG Pingsong,et al. Rock bursts induced by thick-hard roof with compound key strata: Mechanisms and technical modes for prevention[J]. Coal Geology & Exploration,2024,52(10):14−24. DOI: 10.12363/issn.1001-1986.23.11.0788

 

复合关键层厚硬顶板诱冲机制与防治技术模式

基金项目: 国家自然科学基金项目(41807221);西安研究院科技创新基金项目(2022XAYJS04)
详细信息
    作者简介:

    郑凯歌,1988年生,男,河南周口人,博士,副研究员。E-mail:13655617009@163.com

  • 中图分类号: TD32

Rock bursts induced by thick-hard roof with compound key strata: Mechanisms and technical modes for prevention

  • 摘要:
    目的 

    厚硬顶板是诱发煤矿冲击地压、矿震等灾害的关键因素,其中煤层顶板发育有复合关键层厚硬顶板条件下灾害更为严重,揭示复合关键层厚硬顶板诱冲机制,构建防治技术模式迫在眉睫。

    方法 

    运用物理相似模拟和力学分析等方法,建立复合关键层硬顶板和其非协同破断判识方法,揭示复合关键层厚硬顶板诱冲机制,优选防冲技术模式。

    结果和结论 

    结果表明:(1) 复合关键层厚硬顶板呈现“大−小”周期来压规律,来压期间声发射频次和微震能量分别为非来压的5.3倍与7.3倍;上、下位关键层厚硬顶板同步破断扰动叠加,叠合“周期”和“见方”来压效应诱发大型冲击地压灾害。(2) 建立了以中性轴线为基础的复合关键层判识模型,两层及以上关键层厚硬顶板形成复合关键层前提是梁模型横截面上剪切应力不超过对应的抗剪强度。(3) 形成了“悬臂梁”和“砌体梁”两种模式下合理破断线距离定量判识方法,提出了复合关键层厚硬顶板上、下单层和双层协同3种水力压裂卸压技术模式。(4) 分析显示下位关键层压裂主要改变了厚硬顶板关键层完整性和强度,缩短了来压步距,无法控制上位关键层“拱壳”结构大能量冲击地压;上位关键层压裂控制“大周期”破断扰动载荷,减弱了复合关键层耦合效应,大幅降低冲击地压危险性,是冲击地压主控层位,“上−下位”关键层协同压裂为最优卸压防冲模式。该研究成果将为复合厚硬顶板冲击地压地压、矿震灾害区域的精准防治提供重要依据。

    Abstract:
    Objective 

    Thick-hard roofs serve as the key factor inducing disasters such as rock bursts and mining-induced earthquakes in coal mines. These disasters are especially serious in the case of coal seam roofs with compound key strata. Hence, there is an urgent need to reveal the mechanisms behind the rock bursts induced by thick-hard roofs with compound key strata and to develop technical modes for the prevention and control of these rock bursts.

    Methods 

    Using methods including physical simulation experiments on similar materials and mechanical analysis, this study developed methods for identifying roofs with compound key strata and for non-synergistic breaking of the compound key strata. Furthermore, this study revealed the mechanism behind the rock bursts induced by the roof and selected the optimal technical mode for prevention. [Results and Conclusions] Key findings are as follows: (1) Thick-hard roof with compound key strata exhibited large and small periodic weighting, with acoustic emission frequency and microseismic energy during weighting being 5.3 and 7.3 times those in the absence of weighting. The synergistic breaking of the upper and lower compound key strata led to disturbance superimposition, with superimposed periodic effects and weighing effects at square locations inducting large-scale rock bursts. (2) An identification model of compound key strata based the neutral axis was established, revealing that the prerequisite for the phenomenon that two or more key strata in the thick-hard roof form compound key strata is that the shear stress on the cross-section does not exceed the corresponding shear strength in the beam model. (3) A method for quantitatively determining the distances of the breaking lines under the cantilever-beam and masonry-beam models was developed. Furthermore, three hydraulic fracturing and pressure relief technical modes were proposed: the fracturing of the upper key stratum, the fracturing of the lower key stratum, and the synergistic fracturing of both strata. (4) The results indicate that the fracturing of the lower key stratum primary, despite changing the integrity and strength of the lower key stratum and shortening the step distance in periodic weighting, failed to control the energetic rock bursts caused by the arched shells of the upper key stratum. The fracturing of the upper key stratum, the predominant layer influenced by rock bursts, controlled the loads induced by breaking disturbance in large weighing cycles, weakened the coupling effects between the compound key strata, and greatly reduced the dangerousness of rock bursts. In contrast, the synergistic fracturing of both strata was identified as the optimal mode for pressure relief and rock burst prevention. The results of this study will provide an important basis for the precise prevention and control of areas potentially struck by disasters such as rock bursts induced by thick-hard roofs with compound key strata and mining-induced earthquakes.

  • 煤炭地下开采引起上覆岩层变形、破断及运移是诱发采场发生多种矿压动力灾害的根本源头[1-2]。对煤层上覆岩层运移起关键作用的岩层进行控制是解决采场矿压动力灾害问题的关键[3]。伴随着煤矿开采技术装备及管理水平提升和生态、安全、高效开采理念的逐步深入,科学采煤有序发展。但因开采深度和速度不断增加,采场条件日趋复杂,复合关键层厚硬顶板作为其中一种复杂覆岩结构条件,极易造成大步距破断、高能量释放,致使矿井发生矿压异常显现,乃至诱发不同程度的冲击地压、矿震等动力灾害[4-5]。因此,亟需研究掌握复合关键层厚硬顶板运移破断致灾特征,提出针对性防治技术,实现煤矿安全高效开采。

    国内外学者针对复合关键层厚硬顶板破断运移、应力演化及防治技术等方面取得了丰富成果。茅献彪[6]、缪协兴[7]等针对两层或多层顶板关键层协同运移破断情况,提出了复合关键层概念,构建了判识条件和原则,并开发了复合关键层的破断步距计算方法。许家林[8]、闫少宏[9]等依托“传递梁”理论,针对大采高开采扰动多关键层条件,提出了“下悬臂、上砌体、上−下双砌体”结构模型,阐明了顶板“大−小”周期来压发生原因。张培鹏等[10]针对单一和两层厚硬顶板工况条件,搭建了相似物理模型,揭示了上覆厚硬岩层覆岩破断特征及致灾机制。潘红宇等[11]综合“关键层”和“复合材料力学”理论,搭建了Winkler 地基上复合关键层力学模型,结合数值模拟方法,分析了复合关键层破断、应力峰值分布特征及关键层复合效应。Zhu Cheng等[12]通过研究周期加权过程中多关键层结构识别及支护载荷计算方法,推导了低位关键层(SKS1)与高位关键层(SKS2)以悬臂梁、槽梁和阶梯梁的形式周期性断裂的判别条件。于斌等[13]针对特厚煤层大空间开采条件,指出采场覆岩具有“低位、中位、高位”多层次结构特征,“低位−中位”厚硬顶板是诱发不同周期来压的原因,“高位”厚硬顶板失稳联动会诱发强矿压动力灾害。王海洋[14]针对复合坚硬顶板诱发的工作面强矿压动力灾害问题,采用数值计算和相似模拟方法,揭示了其失稳破断诱灾机理及工作面超前应力影响规律。杨俊哲等[15]针对陕西神东矿区厚硬顶板诱发的强矿压动力灾害问题,分析了低位“悬臂结构”破断致灾机制,并开发了厚硬顶板分段水力压裂卸压弱化防治技术。郑凯歌等[16]基于开发的井下长钻孔裸眼分段压裂区域卸压解危模式,提出了“压裂垮落体+煤柱+承重岩层”协同支撑系统,并构建了该支撑系统形成的压裂位置定量判定公式,探索了低位厚硬顶板改造源头卸压防灾机理。高瑞[17]针对山西大同矿区双系地层“远−近”场厚硬顶板易诱发矿震及强矿压动力灾害问题,提出了该工况下覆岩结构力学模型,开发了地面水力压裂防治技术。郑凯歌等[18]针对复合厚硬顶板破断诱发的冲击地压灾害,构建了复合厚硬顶板协同破断诱灾原理,开发了“高−低”位协同错步式分段压裂卸压防冲技术,并建立了压裂效果“时空”响应的多参量动−静结合的综合监测技术体系。吴学明等[19]针对陕西彬长矿区孟村煤矿多层厚硬关键层发育的强冲击地压灾害问题,提出了地面“L”型井压裂弱化60 m以上高位厚硬顶板、井下水平长钻孔压裂弱化30~60 m厚硬顶板及井下爆破卸压弱化30 m内厚硬顶板的立体防治技术模式。

    综上所述,针对复合关键层定义、判识方法、强矿动力灾害诱发机制国内外专家学者开展了系统性研究,并提出了以井下爆破、地面压裂及井下压裂等系列工程防治技术。然而,针对复合关键层厚硬顶板诱发冲击地压机制和卸压弱化防冲层位选择及技术模式研究鲜有报道。基于弹性地基理论、最大拉应力理论与弹性力学,构建复合关键层厚硬顶板力学模型,研究不同压裂模式下采场应力、变形等特征,分析不同压裂模式下覆岩破断作用关系,优选最佳压裂模式,提出复合关键层厚硬顶板判识方法,揭示复合关键层厚硬顶板诱冲机制,以期为相似地质条件矿压动力灾害控制提供新的思路及途径。

    在工作面采掘扰动过程中,采场覆岩并非全部为由下而上逐层应力传递和破断。当工作面煤层上覆顶板发育有2层及以上关键层顶板时,任一关键层顶板发生运移都会对其相邻关键层顶板的破断、能量释放起到促进作用,易引发两层关键层顶板同步或类同步破断,即复合叠加效应。为了确定梁模型的拉伸区与压缩区分界线,即中性轴线,构建复合关键层判识准则,建立复合关键层厚硬顶板力学模型(图1)。

    图  1  复合关键层厚硬顶板分析模型
    Figure  1.  Model for the analysis of a thick-hard roof with composite key strata

    图1所示,HsHz为中性轴线距离上位和下位关键层厚硬顶板顶界距离。梁的横截面正应力σi

    $$ {\sigma }_{\mathrm{i}}=\frac{{E}_{\mathrm{i}}{\textit{z}}}{\rho }$$ (1)

    通过横截面静载应力平衡关系分析:

    $$ {\int }_{{A}_{\mathrm{a}}}{\sigma }_{\mathrm{a}}{\mathrm{d}}{A}_{\mathrm{a}}+{\int }_{{A}_{\mathrm{b}}}{\sigma }_{\mathrm{b}}{\mathrm{d}}{A}_{\mathrm{b}}+{\int }_{{A}_{\mathrm{c}}}{\sigma }_{\mathrm{c}}{\mathrm{d}}{A}_{\mathrm{c}}=0 $$ (2)

    由式(2)转换得到:

    $$ {E}_{\mathrm{a}}{\int }_{{A}_{\mathrm{a}}}{{\textit{z}}}_{\mathrm{a}}{\mathrm{d}}{A}_{\mathrm{a}}+{E}_{\mathrm{b}}{\int }_{{A}_{\mathrm{b}}}{{\textit{z}}}_{\mathrm{b}}{\mathrm{d}}{A}_{\mathrm{b}}+{E}_{\mathrm{c}}{\int }_{{A}_{\mathrm{c}}}{{\textit{z}}}_{\mathrm{c}}{\mathrm{d}}{A}_{\mathrm{c}}=0 $$ (3)

    因此可得:

    $$ {H}_{{\mathrm{z}}}=\frac{{E}_{\text{a}}{{h}_{\text{a}}^{2}}+{E}_{\text{b}}{h}_{\text{b}}\left({h}_{\text{b}}+2{h}_{\text{a}}\right)+{E}_{\text{c}}{h}_{\text{c}}\left({h}_{\text{c}}+2{h}_{\text{b}}+2{h}_{\text{a}}\right)}{2\left({E}_{\text{a}}{h}_{\text{a}}+{E}_{\text{b}}{h}_{\text{b}}+{E}_{\text{c}}{h}_{\text{c}}\right)} $$ (4)

    通过以上分析可知,中性轴线位置主要由上位、下位关键层厚硬顶板及层间软岩厚度及弹性模量决定,其为拉、压受力分界线,即0≤zHz为受拉应力影响区,−Hsz≤0为受压应力影响区。基于弹性理论分析可知,受拉应力影响区在xyz方向应力分解如下:

    $$ \left\{\begin{aligned} &{\sigma }_{x}=-\frac{3q}{2{{H}_{\mathrm{z}}^{2}}h}{x}^{2}{\textit{z}}+\frac{q}{{{H}_{\mathrm{z}}^{2}}h}{{\textit{z}}}^{3}+\frac{q{l}^{2}-3q{{H}_{\mathrm{s}}^{2}}\left(2+\nu \right)}{2{{H}_{\mathrm{z}}^{2}}h}{\textit{z}}\\ &{\sigma }_{y}=-\frac{q}{{{H}_{\mathrm{z}}^{2}}h}{{\textit{z}}}^{3}+\frac{3q}{2h}{\textit{z}}+\frac{q{H}_{\mathrm{z}}}{h}\\ &{\tau }_{\textit{xz}}=\frac{3q}{2{{H}_{\mathrm{z}}^{2}}h}x{{\textit{z}}}^{2}-\frac{3q}{2h}x\end{aligned}\right. $$ (5)

    受压应力影响区应力分解如下:

    $$ \left\{\begin{aligned} &{\sigma }_{x}=-\frac{3q}{2{{H}_{\mathrm{s}}^{2}}h}{x}^{2}{\textit{z}}+\frac{q}{{{H}_{\mathrm{s}}^{2}}h}{{\textit{z}}}^{3}+\frac{q{l}^{2}-3q{{H}_{\mathrm{s}}^{2}}\left(2+\nu \right)}{2{{H}_{\mathrm{s}}^{2}}h}{\textit{z}}\\ &{\sigma }_{y}=-\frac{q}{{{H}_{\mathrm{s}}^{2}}h}{{\textit{z}}}^{3}+\frac{3q}{2h}{\textit{z}}+\frac{q{H}_{\mathrm{s}}}{h}\\ &{\tau }_{\textit{xz}}=\frac{3q}{2{{H}_{\mathrm{s}}^{2}}h}x{{\textit{z}}}^{2}-\frac{3q}{2h}x\end{aligned}\right. $$ (6)

    2层及以上关键层厚硬顶板形成复合关键层前提是在其协同破断运移过程不产生剪切错动,即梁模型横截面上剪切应力不超过抗剪强度。通过分析可知,厚硬顶板复合关键层形成的条件为:

    $$ \left\{\begin{aligned} &{\tau }_{\text{a,max}}\leqslant {\tau }_{\mathrm{b}\mathrm{a}}\\ &{\tau }_{\text{c,max}}\leqslant {\tau }_{\mathrm{b}\mathrm{c}}\\ &{\tau }_{\text{ac,max}}\leqslant {\tau }_{\mathrm{b}\mathrm{a}\mathrm{c}}\end{aligned}\right. $$ (7)

    其中,关键层厚硬顶板与夹层软岩的抗剪强度τc,按照张有乾[20]试验公式计算为:

    $$ {\tau }_{\mathrm{c}}=0.325{\sigma }_{\mathrm{n}}-0.018\;3 $$ (8)

    在受拉区0≤zHz,下位关键层厚硬顶板与软岩夹层层理面剪切应力τa,为:

    $$ {\tau }_{\mathrm{a}}=\frac{3q}{2h}\left[\frac{({H}_{\mathrm{z}}-{h}_{\mathrm{a}}{)}^{2}}{{{H}_{\mathrm{z}}^{2}}}-1\right]x $$ (9)

    由式(8)可知,xl m处关键层顶板与软岩夹层层理面最大剪切应力τa,max为:

    $$ {\tau }_{\text{a}\text{,}\text{max}}=\frac{3q}{2{{H}_{\mathrm{z}}^{2}}h}l({H}_{\mathrm{z}}-{h}_{\mathrm{a}}{)}^{2}-\frac{3q}{2h}l $$ (10)

    同理,在受压应力区−Hsz≤0,上位关键层厚硬顶板与软弱岩层层理面剪切应力为最大为:

    $$ {\tau }_{\text{c,max}}=\frac{3q}{2{{H}_{\mathrm{s}}^{2}}h}l({H}_{\mathrm{s}}-{h}_{\mathrm{c}}{)}^{2}-\frac{3q}{2h}l $$ (11)

    在中心轴线位置处剪切应力最大值为:

    $$ {\tau }_{\text{ac,max}}=-\frac{3q}{2h}l $$ (12)

    其中负号代表剪切应力方向。

    单一厚硬顶板极限垮落步距l为:$ l={h}_{0}\sqrt{\dfrac{2{R}_{\mathrm{t}}}{{q}_{0}}} $

    其中q0通过下式计算:

    $$ {q}_{0}=\frac{{E}_{1}{{h}_{1}}^{3}\displaystyle\sum\limits_{{i}=1}^{n}{\gamma }_{{i}}{h}_{{i}}}{\displaystyle\sum\limits_{{i}=1}^{n}{E}_{{i}}{{h}_{{i}}}^{3}} $$ (13)

    以内蒙古纳林河二号井典型顶板型强冲击危险矿井为例,分析关键层判识方法煤层顶板发育多层关键层厚硬顶板,其中煤层顶板第一层和紧邻的上位关键层厚硬顶板厚度分别为25.71、28.56 m,两层关键层夹层为厚度21.23 m的砂质泥岩(图2),存在复合关键层形成可能,其余关键层顶板夹层距离较远,不具备复合关键层形成条件。在治理工作面顶板的垂直100 m范围内采集顶板岩层样品,进行力学参数测试。

    图  2  典型矿井岩性柱状图
    Figure  2.  Typical lithological column of a mine

    通过计算可知,上、下位关键层厚硬顶板垂直应力约为10.50 MPa,由式(8)计算,层理面的抗剪强度为3.39 MPa。下位关键层厚硬顶板控制岩层至6.62 m粉砂岩,控制范围46.94 m,承载岩层荷载1.12 MPa,顶板极限垮距94.84 m,中性轴线位于煤层顶板30.08 m,位于夹层泥岩4.37 m处,上、下位关键层厚硬顶板与夹层泥岩层理剪切应力分别为1.82、2.07 MPa,中性轴线层理面最大剪切应力2.11 MPa。对比分析可知,在下位关键层厚硬顶板极限跨距位置,上、下位关键层厚硬顶板与夹层软岩层理剪切应力小于层理面的抗剪强度,中性轴线层理面最大剪切应力小于泥岩的抗剪强度,上、下位关键层厚硬顶板会形成复合关键层。

    1) 模型建立及模拟方案设计

    根据内蒙古纳林河二号井试验区覆岩结构特征、模型尺寸及主要力学参数(表1),构建了复合关键层厚硬顶板物理模型(图3),确定了选取河沙、煤灰作为骨料,石膏、大白粉作为黏结材料,0.85~2.36 mm(8~20目)的云母粉为分层材料。几何相似比Cl为200,容重相似比Cγ为1.6,应力及能量相似比Cσ为320,载荷相似比CF为1.28×107,垂直载荷利用重物替代进行加载,具体参数见表2,模型如图3所示。

    表  1  模型岩层力学参数
    Table  1.  Mechanical parameters of rock layers in the model
    岩性 编号 层位 正应力/MPa 内摩擦角/(°) 黏聚力/MPa 计算剪切强度/MPa 泊松比 抗拉强度/MPa 弹性模量/GPa
    砂岩 1-1 下位关键层顶板 14.28 30.50 5.40 13.81 0.26 5.62 7.38
    1-2 下位关键层顶板 14.28 32.00 6.10 15.02 0.25 5.74 9.26
    1-3 下位关键层顶板 14.28 30.87 5.70 14.24 0.23 6.02 8.58
    平均 14.28 31.12 5.73 14.35 0.25 5.79 8.41
    泥岩 2-1 软岩夹层 14.05 24.96 3.78 10.32 0.28 2.85 2.82
    2-2 软岩夹层 14.05 28.26 2.95 10.50 0.32 2.71 2.65
    2-3 软岩夹层 14.05 24.60 3.25 9.68 0.31 1.98 2.78
    平均 14.05 25.94 3.33 10.16 0.30 2.51 2.75
    砂岩 3-1 上位关键层顶板 13.38 32.20 6.16 14.59 0.24 6.34 11.02
    3-2 上位关键层顶板 13.38 36.26 5.98 15.79 0.21 5.89 10.58
    3-3 上位关键层顶板 13.38 36.11 7.34 17.10 0.25 7.02 10.23
    平均 13.38 34.85 6.49 15.81 0.23 6.42 10.61
    下载: 导出CSV 
    | 显示表格
    图  3  复合关键层覆岩运移物理模型
    Figure  3.  Physical model illustrating the migration of overlying compound key strata
    表  2  模型相似材料配比
    Table  2.  Ratios of similar materials in the model
    序号 岩石
    名称
    密度/
    (kg·m−3)
    体积
    模量/GPa
    剪切模量/
    GPa
    抗拉
    强度/MPa
    黏聚力/
    MPa
    1 砂质泥岩 2 400 15.3 10.5 2.0 1.20
    2 3-1煤层 1 400 5.4 3.6 0.3 0.78
    3 粉砂岩 2 400 18.5 10.2 2.2 1.55
    4 细粒砂岩 2 500 17.0 9.5 2.3 1.32
    5 砂质泥岩 2 400 15.3 10.5 2.0 1.20
    6 粉砂岩 2 400 18.5 10.2 2.2 1.55
    7 细粒砂岩 2 500 17.0 9.5 2.3 1.32
    8 粉砂岩 2 400 18.5 10.2 2.2 1.55
    9 砂质泥岩 2 400 15.3 10.5 2.0 1.20
    10 粉砂岩 2 400 18.5 10.2 2.2 1.55
    11 砂质泥岩 2400 15.3 10.5 2.0 1.20
    12 细粒砂岩 2500 17.0 9.5 2.3 1.32
    13 砂质泥岩 2400 15.3 10.5 2.0 1.20
    14 细粒砂岩 2500 17.0 9.5 2.3 1.32
    15 粉砂岩 2400 18.5 10.2 2.2 1.55
    16 砂质泥岩 2400 15.3 10.5 2.0 1.20
    17 粉砂岩 2400 18.5 10.2 2.2 1.55
    下载: 导出CSV 
    | 显示表格

    模型左右留设30 cm边界煤柱,从左侧边界煤柱处布置综采工作面,工作面推进长度为200 cm,开挖过程中通过在模型中布设应力传感器、微震探头、声发射探头等动态监测应力场及能量场变化。

    2) 复合关键层顶板破断特征

    模拟回采过程中,设计每次开挖长度2.0 cm、高度2.8 cm。如图4a所示,当工作面开挖41 cm(原型距离82 m)时,顶板大面积破断垮落,初次来压,垮落岩层厚度为3.1 cm。下位关键层厚硬顶板难以形成稳定铰接砌体梁结构,悬露端与垮落处间隔高度不断增大,其低位发生破断垮落,岩层垮落厚度3.2 cm,垮落高度达15.2 cm,顶板悬露长度19.7 cm,前垮落角47°,后垮落角50.5°,工作面初次来压。下位关键层厚硬顶板垮落部分形成铰接结构,短暂存在后,模型采空区侧铰接结构发生滑移。

    图  4  复合关键层厚硬顶板破断特征
    Figure  4.  Breaking characteristics of the roof with compound key strata

    图4b所示,伴随着工作面不断推进,当工作面回采至96 cm时,下位关键层厚硬顶板发生第4次周期来压,来压步距12.0 cm。垮落高度20.6 cm,顶板悬露长度66.1 cm,前垮落角为43°,后垮落角为46°。因下位关键层强度较大,且上位关键层起主要承载作用,导致下位关键层厚硬顶板悬露长度较大,达17.7 cm,顶板垮落范围主要覆盖直接顶与下位厚硬关键层顶板中下部。

    图4c所示,当工作面回采至130 cm时,下位关键层厚硬顶板发生第9次周期来压,来压步距12.0 cm。垮落高度20.8 cm,顶板悬露长度96.4 cm,前垮落角为38°,后垮落角为46°。伴随直接顶及下位关键层厚硬顶板发生破断垮落后,上覆岩层明显弯曲下沉范围逐渐加大,并同步产生大量的横向裂隙,逐步向上位关键层厚硬顶板延伸。

    图4d所示,当工作面回采至158 cm时,工作面“见方”位置来压,下位关键层厚硬顶板来压步距10 cm。垮落高度47.3 cm,顶板悬露长度53.7 cm,下位关键层厚硬顶板前垮落角为58°,后垮落角为46°。上位关键层厚硬顶板发生大范围破断,因前期回采承载层为下位关键层厚硬顶板,促使上位关键层厚硬顶板初次破断距离达百米级,自其破断处向下出现大面积沉降,裂隙和离层进一步向上发育,诱发更为强烈的来压现象,在模型采空区前后两侧形成较多破断后的铰接结构。

    3) 声发射及微震能量特征

    模型回采过程中同步进行声发射和微震能量监测,通过图5a分析,当工作面发生初次来压时,声发射事件数较高,振铃计数为22 462次,能量为21 496 mV·μs,能量/振铃计数=0.957,此时下位厚硬关键层破断剧烈,出现6 000 J以上微震量级事件,能量波动幅度显著,形成了强烈的冲击,应力大范围释放,工作面强来压明显。

    图  5  模型回采过程中声发射及微震能量变化
    Figure  5.  Changes in acoustic emission frequency and microseismic energy during the mining of model

    工作面持续推进声发射振铃分布特征总体呈U形分布,周期来压期间,振铃计数在8 595~30 197,平均达14 000,能量指标8 926~35 622 mV·μs,平均达16 000 mV·μs;非来压期间振铃计数800~5 200,平均为2 200,能量指标920~12 200 mV·μs,平均达3 000 mV·μs。来压期间振铃次数、能量指标分别为非来压期间的7.3倍和5.3倍。工作面推进158 cm时,工作面一次见方,振铃计数为30 197次,能量指标为35 622 mV·μs,能量异常增高。

    图5b图5e为微震能量监测显示(能量相似比为320),工作面初次来压后共发生6 000~8 000 J高能微震事件次数为20次,8 000 J以上的高能量微震事件7次,主要集中在上、下位关键层厚硬顶板。其中工作面第4次周期来压时,下位关键层厚硬顶板完全破断,并回转运移,微震事件频次和能量级增长幅度达到峰值,微震事件在垂直方向上分布特征为与上位关键层距离越近,发生频次及能量逐渐增大。随着工作面推进,微震事件的总能量和频次相对第4次周期来压阶段有所减少,当第11次周期来压时,即工作面一次见方,微震事件频次和能量级再次出现阶段性峰值,并产生8000 J以上的高能微震事件2次,表明厚硬顶板回采工作面在“见方效应”叠加下,上、下位关键层厚硬顶板形成复合破断效应,大面积破断垮落,易形成工作面回采冲击地压灾害危险。

    1) 破断形态

    基于物理模拟实验可知,当煤层顶板存在“上−下位”复合关键层时,如图6a所示,伴随着回采推进,下位顶板关键层C1关键块周期破断离层和裂隙延伸至上位顶板关键层,但其仍未达到破断条件。同时,下位关键层悬臂梁或“砌体梁”中的结构岩块B1再次发生周期来压,同时带动上位关键层“砌体梁”中的岩块B2、C2发生破断运移,两层关键层在顶界面同时发生张拉破裂,B1、B2、C2结构岩块裂缝发育并联通,诱发冲击等动力灾害,如图6b所示。

    图  6  复合关键层厚硬顶板同时破断
    Figure  6.  Concurrent breaking of composite key strata in the thick-hard roof

    当上位关键层较下位关键层厚度更大、强度更高时,形成更长的“砌体梁”结构岩块时,其破断回转速度通常大于下位关键层,即ω2>ω1。结构岩块B2将对结构块体B1产生压覆动力作用,即上位关键层“砌体梁”中结构岩块B2 转动破断时将会产生叠加动力传递至下位关键层结构岩块B1,下位关键层结构岩块的实际载荷由q1瞬时增加q1′,这将加大下位关键层结构岩块回转运移速度。此时上位关键层“砌体梁”结构岩块通过压覆下位关键层块体、加大其实际载荷,进而通过提升下位关键层结构岩块回转速度,提高了动载扰动效应,产生“上−下”位关键层能量叠加效应。

    2) 力学结构

    由“上−下”位复合关键层形成的判识条件可知,其主要受到岩层、层理面抗剪强度及上下位关键层和层间软弱层厚度影响,随着软岩层厚度增大,上、下位关键层相互扰动效应逐步减弱,当达到一定间距时两者将不存在相互扰动。如图7所示,上、下位复合关键层不产生协同破断作用的条件是,上位关键层破断延后于下位关键层,即上位关键层破断位置位于下位关键层即将破断线位置之外[21-22]

    图  7  “上−下”位复合关键层无相互扰动模型
    Figure  7.  Model illustrating the absence of mutual disturbance between the upper and lower compound key strata

    通过模型分析可知,$ AB=CD={L}_{\mathrm{n}} $,利用$ RT \Delta BCD $计算可获得:$ {h}_{\mathrm{i}}={L}_{\mathrm{n}}\times {{\mathrm{cot}}}\beta $。即当上、下位复合关键层间距满足$ {h}_{\mathrm{i}}\geqslant {L}_{1}\times {{\mathrm{cot}}}\beta $时,可避免协同破断造成的相互扰动。当上、下位关键层不发生同步破断时,为了确定L1计算方式,构建“悬臂梁”和“砌体梁”条件下上、下位复合关键层非协同破断力学模型。

    图8haLp计算方法如下:

    图  8  “上−下”位复合关键层无相互扰动模型
    Figure  8.  Models illustrating the absence of mutual disturbance between the upper and lower compound key strata
    $$ {h}_{\mathrm{a}}=0.5\left({h}_{1}-{L}_{1}\mathrm{sin}\beta \right) $$ (14)
    $$ {L}_{\mathrm{p}}=\frac{{L}_{\mathrm{k}}}{2}-\left({h}_{0}+{h}_{1}\right)\mathrm{tan}\beta $$ (15)

    基于最大拉应力破坏准则分析,可获得“悬臂梁”和“砌体梁”两种模式下L1的计算公式:

    $$ {L}_{1}=\dfrac{\sqrt{{{Q}_{2}}^{2}+{q}_{\mathrm{z}\mathrm{l}}\left\{2P\left[\dfrac{{L}_{\mathrm{k}}-\left({h}_{0}+{h}_{1}\right){{\mathrm{tan}}}\alpha }{2}\right]+\dfrac{{R}_{1T}{{h}_{1}}^{2}}{3}\right\}}-{Q}_{2}}{{q}_{\mathrm{z}\mathrm{l}}} $$ (16)
    $$ {L}_{1}=\dfrac{\sqrt{\left({Q}_{2}+R\right)^{2}+{q}_{\mathrm{z}\mathrm{l}}\left\{2R\left({h}_{1}-\dfrac{a}{2}\right)\mathit{{\mathrm{tan}}}\beta +{Q}_{2}{L}_{1}+\dfrac{{R}_{1T}{{h}_{1}}^{2}}{3}+2P\left[\dfrac{{L}_{\mathrm{k}}}{2}-\left({h}_{0}+{h}_{1}\right)\mathit{{\mathrm{tan}}}\beta \right]-2T\left({h}_{1}-\dfrac{a}{2}\right)\right\}}-R-{Q}_{2}}{{q}_{\mathrm{z}\mathrm{l}}} $$ (17)

    通过分析可知,下位关键层厚硬顶板呈现20~26 m“小周期”破断,相比非关键层顶板来压明显,其破断对工作面及巷道造成的矿压显现程度与其悬顶面积等直接相关。上位关键层厚硬顶板呈现大步距破断,影响范围广,破断失稳产生动载能量大,当其与下位关键层厚硬顶板协同破断时,会诱发更大规模冲击、矿震及飓风等动力灾害问题。

    通过以上分析可知改善上、下位关键层覆岩破断特征,避免协同破断诱灾是关键。针对“上−下位”复合关键层冲击地压灾害,提出了3种水力压裂弱化技术思路,如图9所示。

    图  9  复合关键层井下分段压裂弱化模式
    Figure  9.  Downhole staged fracturing mode of composite key strata for weakening breaking

    模式1通过上位关键层厚硬顶板分段压裂改造,缩短悬顶面积,缩短“大周期”来压步距;模式2通过分段压裂改造下位关键层厚硬顶板,缩短来压步距,填充采空空间,抑制上位关键层大规模破断;模式3通过“上−下位”复合关键层分段压裂,即缩短两者来压步距,同时缩短下位关键层至上位关键层断裂线长度到合理范围。

    复合关键层发育工作面,在回采过程中,直接顶岩层及时破断垮落,但由于下位关键层厚硬顶板对上位关键层之间松散层起支撑作用,顶板形成“拱壳”结构,其积聚的弹性能不断增加。采空区上覆载荷向四周传递,下位关键层承受载荷不断增加,初次破断后形成“悬臂梁”结构,其积聚的弹性能突然释放,岩梁大幅度回转对工作面形成冲击作用。同样,当上位关键层达到破断步距时,顶板积聚的弹性能达到最大,上位关键层“拱壳”结构失稳破坏,扰动载荷向更深处煤岩体传递,造成下位关键层受载前移,其破断动载扰动下位关键层破坏失稳,造成工作面更为强烈的冲击现象。

    下位关键层压裂改造后,采场上覆岩层在硬岩层的控制作用下分层逐步垮落形成“拱壳”结构(图10)。上位关键层厚硬顶板强度降低,破断产生的周期来压步距缩短,此时矿压显现不强烈。随着工作面继续推进,上位关键层厚硬顶板达到破断跨距时,“拱壳”大结构上积聚的弹性能最大,工作面再继续推进结构破坏,积聚的弹性能将突然释放,工作面冲击显现增强。随着工作面继续推进,“拱壳”结构将以采空区某一点(存在大块且垮落规则的矸石)为拱脚重复形成。即下位关键层厚硬顶板压裂后,平均周期来压步距减小,工作面来压强度较小;当工作面继续推进发生上位与下位关键层厚硬顶板同步破断或“大周期破断”载荷扰动叠加时,产生强来压现象,造成冲击破坏,未能避免复合关键层厚硬顶板耦合作用。

    图  10  下位关键层压裂后顶板“拱壳”结构
    Figure  10.  Arched shells of the roof formed after the fracturing of the lower key stratum

    上位关键层厚硬顶板压裂弱化后,降低了上位关键层厚硬顶板承载性能,支承压力峰值位置向煤体深部迁移,支承压力峰值点降低,周期破断步距减小,顶板弹性能释放次数增多。上位关键层弱化破断后载荷向深部转移,同时由于压裂后上位关键层厚硬顶板承载性能降低,上覆岩层载荷向下位关键层厚硬顶板传递,下位关键层厚硬顶板周期破断后能量降低,工作面来压强度较小,顶板下沉明显,对上覆岩层支撑效能增加,“大周期”来压扰动叠加载荷减弱,冲击危险性降低明显,卸压弱化改造效果较下位关键层改造效果明显(图11)。

    图  11  上位关键层压裂后顶板“拱壳”结构
    Figure  11.  Arched shells of the roof formed after the fracturing of the upper key stratum

    采用上、下位关键层厚硬顶板分段压裂模式进行卸压弱化后,下位关键层厚硬顶板强度弱化,悬顶长度减少,来压步距缩短,破断频次提高,破断扰动高度降低。上位关键层厚硬顶板与下位关键层厚硬顶板形成错步式压裂裂缝,降低上位关键层厚硬顶板“大周期”破断回转动载能量,同时促使上、下位关键层厚硬顶板逐层分步错时短距离垮落,避免其能量扰动叠加作用于下位关键层,能量耗散加快,实现复合关键层厚硬顶板冲击地压有效防治(图12)。

    图  12  复合关键层协同压裂破断结构
    Figure  12.  Breaking structures caused by synergistic fracturing of compound key strata

    综上可知,上、下位关键层厚硬顶板单一压裂及两者协同压裂弱化改造,均能实现冲击灾害程度减弱,但上位关键层厚硬顶板压裂后,周期破断后能量降幅,工作面来压强度减小程度,顶板下沉量及速度均优于下位关键层,揭示了上位关键层厚硬顶板具有卸压主控层位的特征。“上−下位”关键层协同压裂弱化,避免复合关键层相互扰动效应,是最为有效的控制模式。

    (1) 建立了复合关键层厚硬顶板中性轴位置定量判识方法,其为拉、压受力分界线,由上位、下位厚硬关键层及层间软岩厚度及弹性模量等参数决定,结合复合关键层厚硬顶板力学模型,构建以抗剪强度为基础条件的复合关键层厚硬顶板判识准则。

    (2) 物理模拟揭示了复合关键层厚硬顶板呈现明显的“大−小”周期来压特征,来压期间振铃次数、能量指标分别为非来压期间的7.3倍和5.3倍。“见方效应”叠加,诱发8 000 J以上大能量事件,叠合上、下位关键层厚硬顶板形成复合破断效应,大面积破断垮落,导致微震事件增多,能级增高,易诱发工作面冲击地压灾害。

    (3) 基于断裂力学理论,建立了“悬臂梁”和“砌体梁”下的上、下位复合关键层非协同破断力学模型,构建了两种条件的下位关键层最新断裂线与上位关键层水平合理距离定量计算公式,并提出了上、下位关键层单一层位和双层协同卸压防治技术模型。

    (4) 提出了3种弱化模式:上位关键层弱化、下位关键层弱化及上−下位关键层弱化模式,其中上位关键层压裂减小了破断扰动荷载,降低下位关键层支撑峰值应力,冲击危险性减弱明显,为防冲主控层位,“上−下位”关键层协同压裂为最优卸压防冲模式。

    AaAbAc分别为图1坐标系中1号关键层、软岩夹层及2号关键层岩层的面积,m2E1EaEbEc分别为煤层顶板第1层、1号关键层、软岩夹层及2号关键层的弹性模量,MPa;Ei为岩层弹性模量,MPa;FP为液压支架阻力,MN;FRFT分别为交点O1处的剪切力和水平推力,MN;h为坐标系模型中的岩层厚度,m;ha1为结构岩块端角处挤压接触面高度,m;h1hi分别为煤层顶板第1层和第i层高度,m;hahbhc厚分别为1号关键层、软岩夹层及2号关键层厚度,m;HsHz分别为中性轴线距离上位和下位关键层厚硬顶板顶界位置;L为采空区悬顶长度,m;Lk为顶板控制距离,m;L1为下位关键层最新断裂线与上位关键层水平距离,m;Lp为支撑阻力作用点与O点之间的水平距离,m;l为单一厚硬顶板极限垮落步距,m;n为厚硬顶板上覆岩层数;P为支架的支撑阻力,MN;q为载荷,MPa;q1q2分别为下、上位关键层上覆岩层载荷,MPa;qz1为结构岩块A1重量载荷及其上部控制层载荷,MPa;q0为厚硬顶板上覆岩层的载荷,kN/m2Q2为上位关键层破断传递荷载,MPa;R1T为下位关键层的极限抗拉强度,MPa;RT分别为点01(MN)处的剪切力和水平推力,MN;Rt为岩层抗拉强度,MPa;xy为坐标系中xy轴方向的距离,m;zazbzc分别为图1中坐标系中1号关键层、软岩夹层及2号关键层岩层的z轴方向距离,m;z为坐标系中z轴方向的距离,m;α为断裂线与垂直方向夹角,(°);β为断裂线与水平方向夹角,(°);ρ为中性轴线曲率半径;σaσbσc分别为1号关键层、软岩夹层及2号关键层的应力,MPa;σi为梁的横截面正应力,MPa;σn为岩层总应力;τa,maxτc,max分别为下位和上位关键层厚硬顶板与夹层软岩层理面的最大剪切应力;τxz为坐标系中xz方向上的最大剪切应力;τac,max为中性轴线处最大剪切应力;τbaτbc分别为下位和上位厚硬顶板关键层与软岩夹层b层理面的抗剪强度;τbac为软岩夹层b层理面抗剪强度;v为岩层泊松比;γi为第i层容重,kN/m3

  • 图  1   复合关键层厚硬顶板分析模型

    Fig.  1   Model for the analysis of a thick-hard roof with composite key strata

    图  2   典型矿井岩性柱状图

    Fig.  2   Typical lithological column of a mine

    图  3   复合关键层覆岩运移物理模型

    Fig.  3   Physical model illustrating the migration of overlying compound key strata

    图  4   复合关键层厚硬顶板破断特征

    Fig.  4   Breaking characteristics of the roof with compound key strata

    图  5   模型回采过程中声发射及微震能量变化

    Fig.  5   Changes in acoustic emission frequency and microseismic energy during the mining of model

    图  6   复合关键层厚硬顶板同时破断

    Fig.  6   Concurrent breaking of composite key strata in the thick-hard roof

    图  7   “上−下”位复合关键层无相互扰动模型

    Fig.  7   Model illustrating the absence of mutual disturbance between the upper and lower compound key strata

    图  8   “上−下”位复合关键层无相互扰动模型

    Fig.  8   Models illustrating the absence of mutual disturbance between the upper and lower compound key strata

    图  9   复合关键层井下分段压裂弱化模式

    Fig.  9   Downhole staged fracturing mode of composite key strata for weakening breaking

    图  10   下位关键层压裂后顶板“拱壳”结构

    Fig.  10   Arched shells of the roof formed after the fracturing of the lower key stratum

    图  11   上位关键层压裂后顶板“拱壳”结构

    Fig.  11   Arched shells of the roof formed after the fracturing of the upper key stratum

    图  12   复合关键层协同压裂破断结构

    Fig.  12   Breaking structures caused by synergistic fracturing of compound key strata

    表  1   模型岩层力学参数

    Table  1   Mechanical parameters of rock layers in the model

    岩性 编号 层位 正应力/MPa 内摩擦角/(°) 黏聚力/MPa 计算剪切强度/MPa 泊松比 抗拉强度/MPa 弹性模量/GPa
    砂岩 1-1 下位关键层顶板 14.28 30.50 5.40 13.81 0.26 5.62 7.38
    1-2 下位关键层顶板 14.28 32.00 6.10 15.02 0.25 5.74 9.26
    1-3 下位关键层顶板 14.28 30.87 5.70 14.24 0.23 6.02 8.58
    平均 14.28 31.12 5.73 14.35 0.25 5.79 8.41
    泥岩 2-1 软岩夹层 14.05 24.96 3.78 10.32 0.28 2.85 2.82
    2-2 软岩夹层 14.05 28.26 2.95 10.50 0.32 2.71 2.65
    2-3 软岩夹层 14.05 24.60 3.25 9.68 0.31 1.98 2.78
    平均 14.05 25.94 3.33 10.16 0.30 2.51 2.75
    砂岩 3-1 上位关键层顶板 13.38 32.20 6.16 14.59 0.24 6.34 11.02
    3-2 上位关键层顶板 13.38 36.26 5.98 15.79 0.21 5.89 10.58
    3-3 上位关键层顶板 13.38 36.11 7.34 17.10 0.25 7.02 10.23
    平均 13.38 34.85 6.49 15.81 0.23 6.42 10.61
    下载: 导出CSV

    表  2   模型相似材料配比

    Table  2   Ratios of similar materials in the model

    序号 岩石
    名称
    密度/
    (kg·m−3)
    体积
    模量/GPa
    剪切模量/
    GPa
    抗拉
    强度/MPa
    黏聚力/
    MPa
    1 砂质泥岩 2 400 15.3 10.5 2.0 1.20
    2 3-1煤层 1 400 5.4 3.6 0.3 0.78
    3 粉砂岩 2 400 18.5 10.2 2.2 1.55
    4 细粒砂岩 2 500 17.0 9.5 2.3 1.32
    5 砂质泥岩 2 400 15.3 10.5 2.0 1.20
    6 粉砂岩 2 400 18.5 10.2 2.2 1.55
    7 细粒砂岩 2 500 17.0 9.5 2.3 1.32
    8 粉砂岩 2 400 18.5 10.2 2.2 1.55
    9 砂质泥岩 2 400 15.3 10.5 2.0 1.20
    10 粉砂岩 2 400 18.5 10.2 2.2 1.55
    11 砂质泥岩 2400 15.3 10.5 2.0 1.20
    12 细粒砂岩 2500 17.0 9.5 2.3 1.32
    13 砂质泥岩 2400 15.3 10.5 2.0 1.20
    14 细粒砂岩 2500 17.0 9.5 2.3 1.32
    15 粉砂岩 2400 18.5 10.2 2.2 1.55
    16 砂质泥岩 2400 15.3 10.5 2.0 1.20
    17 粉砂岩 2400 18.5 10.2 2.2 1.55
    下载: 导出CSV
  • [1] 王家臣. 基于采动岩层控制的煤炭科学开采[J]. 采矿与岩层控制工程学报,2019,24(2):34−41.

    WANG Jiachen. Sustainable coal mining based on mining ground control[J]. Journal of Mining and Strata Control Engineering,2019,24(2):34−41.

    [2] 王兆会,唐岳松,李猛,等. 深埋薄基岩采场覆岩冒落拱与拱脚高耸岩梁复合承载结构形成机理与应用[J]. 煤炭学报,2023,48(2):563−575.

    WANG Zhaohui,TANG Yuesong,LI Meng,et al. Development and application of overburden structure composed of caving arch and towering roof beam in deep longwall panel with thin bedrock[J]. Journal of China Coal Society,2023,48(2):563−575.

    [3] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.

    [4] 柴敬,雷武林,杜文刚,等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报,2020,45(1):44−53.

    CHAI Jing,LEI Wulin,DU Wengang,et al. Deformation of huge thick compound key layer in stope based on distributed optical fiber sensing monitoring[J]. Journal of China Coal Society,2020,45(1):44−53.

    [5]

    DU Wenfeng,PENG Suping,ZHU Guowei,et al. Time-lapse geophysical technology-based study on overburden strata changes induced by modern coal mining[J]. International Journal of Coal Science & Technology,2014,1(2):184−191.

    [6] 茅献彪,缪协兴,钱鸣高. 采动覆岩中复合关键层的断裂跨距计算[J]. 岩土力学,1999,20(2):1−4. DOI: 10.3969/j.issn.1000-7598.1999.02.001

    MAO Xianbiao,MIAO Xiexing,QIAN Minggao. Calculation for fracture span of conpound key strata in mining rocks[J]. Rock and Soil Mechanics,1999,20(2):1−4. DOI: 10.3969/j.issn.1000-7598.1999.02.001

    [7] 缪协兴,茅献彪,孙振武,等. 采场覆岩中复合关键层的形成条件与判别方法[J]. 中国矿业大学学报,2005,34(5):547−550. DOI: 10.3321/j.issn:1000-1964.2005.05.002

    MIAO Xiexing,MAO Xianbiao,SUN Zhenwu,et al. Formation conditions of compound key strata in mining overlayer strata and its discriminance[J]. Journal of China University of Mining & Technology,2005,34(5):547−550. DOI: 10.3321/j.issn:1000-1964.2005.05.002

    [8] 许家林,鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报,2011,30(8):1547−1556.

    XU Jialin,JU Jinfeng. Structural morphology of key stratum and its influence on strata behaviors in fully-mechanized face with super-large mining height[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1547−1556.

    [9] 闫少宏,尹希文,许红杰,等. 大采高综采顶板短悬臂梁−铰接岩梁结构与支架工作阻力的确定[J]. 煤炭学报,2011,36(11):1816−1820.

    YAN Shaohong,YIN Xiwen,XU Hongjie,et al. Roof structure of short cantilever-articulated rock beam and calculation of support resistance in full-mechanized face with large mining height[J]. Journal of China Coal Society,2011,36(11):1816−1820.

    [10] 张培鹏,蒋力帅,刘绪峰,等. 高位硬厚岩层采动覆岩结构演化特征及致灾规律[J]. 采矿与安全工程学报,2017,34(5):852−860.

    ZHANG Peipeng,JIANG Lishuai,LIU Xufeng,et al. Mining-induced overlying strata structure evolution characteristics and disaster-triggering under high level hard thick strata[J]. Journal of Mining & Safety Engineering,2017,34(5):852−860.

    [11] 潘红宇,李树刚,张涛伟,等. Winkler地基上复合关键层模型及其力学特性[J]. 中南大学学报(自然科学版),2012,43(10):4050−4056.

    PAN Hongyu,LI Shugang,ZHANG Taowei,et al. Composite key stratum module of Winkler foundation and its mechanical properties[J]. Journal of Central South University (Science and Technology),2012,43(10):4050−4056.

    [12]

    ZHU Cheng,YUAN Yong,YUAN Chaofeng,et al. Study on the structural forms of the key strata in the overburden of a stope during periodic weighting and the reasonable working resistance of the support[J]. Energy Science & Engineering,2020,8(7):2599−2620.

    [13] 于斌,杨敬轩,刘长友,等. 大空间采场覆岩结构特征及其矿压作用机理[J]. 煤炭学报,2019,44(11):3295−3307.

    YU Bin,YANG Jingxuan,LIU Changyou,et al. Overburden structure and mechanism of rock pressure in large space stope[J]. Journal of China Coal Society,2019,44(11):3295−3307.

    [14] 王海洋. 复合坚硬顶板变形破断特征及对矿压显现的影响规律[D]. 重庆:重庆大学,2017.

    WANG Haiyang. Deformation and breaking characteristics of compound hard roof and its influence on pressure behavior[D]. Chongqing:Chongqing University,2017.

    [15] 杨俊哲,郑凯歌,王振荣,等. 坚硬顶板动力灾害超前弱化治理技术[J]. 煤炭学报,2020,45(10):3371−3379.

    YANG Junzhe,ZHENG Kaige,WANG Zhenrong,et al. Technology of weakening and danger-breaking dynamic disasters by hard roof[J]. Journal of China Coal Society,2020,45(10):3371−3379.

    [16] 郑凯歌,杨俊哲,李彬刚,等. 基于垮落充填的坚硬顶板分段压裂弱化解危技术[J]. 煤田地质与勘探,2021,49(5):77−87.

    ZHENG Kaige,YANG Junzhe,LI Bingang,et al. Collapse filling-based technology of weakening and danger-solving by staged fracturing in hard roof[J]. Coal Geology & Exploration,2021,49(5):77−87.

    [17] 高瑞. 远场坚硬岩层破断失稳的矿压作用机理及地面压裂控制研究[D]. 徐州:中国矿业大学,2018.

    GAO Rui. The mechanism of ground pressure induced by the breakage of far-field hard strata and the control technology of ground fracturing[D]. Xuzhou:China University of Mining and Technology,2018.

    [18] 郑凯歌,袁亮,杨森,等. 基于分区弱化的复合坚硬顶板冲击地压分段压裂区域防治研究[J]. 采矿与安全工程学报,2023,40(2):322−333.

    ZHENG Kaige,YUAN Liang,YANG Sen,et al. Study on prevention and control of rock burst staged fracturing area of composite hard roof based on zoning weakening[J]. Journal of Mining & Safety Engineering,2023,40(2):322−333.

    [19] 吴学明,马小辉,吕大钊,等. 彬长矿区“井上下” 立体防治冲击地压新模式[J]. 煤田地质与勘探,2023,51(3):19−26.

    WU Xueming,MA Xiaohui,LYU Dazhao,et al. A new model of surface and underground integrated three-dimensional prevention and control of rock burst in Binchang Mining Area[J]. Coal Geology & Exploration,2023,51(3):19−26.

    [20] 张有乾. 考虑层间剪切特性复合顶板失稳机理及控制[D]. 徐州:中国矿业大学,2015.

    ZHANG Youqian. Instability and control mechanism of layered compound roof in consideration of shear behavior of bedding plane[D]. Xuzhou:China University of Mining and Technology,2015.

    [21]

    LI Zhu,XU Jialin,YU Shengchao,et al. Mechanism and prevention of a chock support failure in the longwall top-coal caving faces:A case study in Datong Coalfield,China[J]. Energies,2018,11(2):288. DOI: 10.3390/en11020288

    [22]

    WANG Feng,XU Jialin,XIE Jianlin,et al. Mechanisms influencing the lateral roof roadway deformation by mining-induced fault population activation:A case study[J]. International Journal of Oil,Gas and Coal Technology,2016,11(4):411. DOI: 10.1504/IJOGCT.2016.075115

  • 期刊类型引用(3)

    1. 徐文海,单磊,高毅仁,吴攀,莫嵘桓. 基于钻孔-切槽的冲击诱导突出耦合灾害防治技术研究. 煤矿机械. 2025(03): 80-85 . 百度学术
    2. 谭云亮,张修峰,范德源,刘学生,朱斯陶,牟宗龙,陈洋. 沿空侧向覆岩结构改性防冲机理与实践. 煤炭学报. 2025(01): 209-223 . 百度学术
    3. 李延军. 复合坚硬顶板强矿压显现特征及主控层位确定. 工矿自动化. 2024(12): 36-45+84 . 百度学术

    其他类型引用(0)

图(12)  /  表(2)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  27
  • PDF下载量:  47
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-11-30
  • 修回日期:  2024-07-20
  • 录用日期:  2024-10-24
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回