大宁–吉县区块深部煤层气多轮次转向压裂技术及应用

熊先钺, 甄怀宾, 李曙光, 王红娜, 张雷, 宋伟, 林海, 徐凤银, 李忠百, 朱卫平, 王成旺, 陈高杰

熊先钺,甄怀宾,李曙光,等. 大宁–吉县区块深部煤层气多轮次转向压裂技术及应用[J]. 煤田地质与勘探,2024,52(2):147−160. DOI: 10.12363/issn.1001-1986.23.10.0683
引用本文: 熊先钺,甄怀宾,李曙光,等. 大宁–吉县区块深部煤层气多轮次转向压裂技术及应用[J]. 煤田地质与勘探,2024,52(2):147−160. DOI: 10.12363/issn.1001-1986.23.10.0683
XIONG Xianyue,ZHEN Huaibin,LI Shuguang,et al. Multi-round diverting fracturing technology and its application in deep coalbed methane in the Daning-Jixian block[J]. Coal Geology & Exploration,2024,52(2):147−160. DOI: 10.12363/issn.1001-1986.23.10.0683
Citation: XIONG Xianyue,ZHEN Huaibin,LI Shuguang,et al. Multi-round diverting fracturing technology and its application in deep coalbed methane in the Daning-Jixian block[J]. Coal Geology & Exploration,2024,52(2):147−160. DOI: 10.12363/issn.1001-1986.23.10.0683

 

大宁–吉县区块深部煤层气多轮次转向压裂技术及应用

基金项目: 国家科技重大专项项目(2016ZX05042);中国石油天然气股份有限公司攻关性应用性技术攻关项目(2023ZZ18);中国石油天然气股份有限公司科技专项“非常规储层改造关键技术研究”项目
详细信息
    作者简介:

    熊先钺,1984年生,男,湖北荆州人,博士,高级工程师,从事煤层气地质和工程技术研究工作. E-mail:xiongxianyue2009@petrochina.com.cn

    通讯作者:

    徐凤银,1964年生,男,陕西佳县人,博士,教授,博士生导师,从事煤炭、煤层气、石油、天然气地质研究与管理工作. E-mail:xufy518@sina.com.cn

  • 中图分类号: TE349

Multi-round diverting fracturing technology and its application in deep coalbed methane in the Daning-Jixian block

  • 摘要:

    鄂尔多斯盆地东缘大宁−吉县区块深部煤层气资源丰度高,煤储层天然裂缝与煤自身割理裂隙发育、煤体结构好、机械强度高、顶底板封盖能力强,为大规模体积压裂缝网的形成提供了有利条件。超大规模压裂改造工艺使深部煤层气单井产量获得重大突破,但示踪剂监测结果显示,水平井各压裂段产气效果贡献不均一、资源动用存在盲区、综合效益未达预期。指出深部煤储层形成超大规模有效缝网面临两类主要挑战:(1) 深部煤层裂缝扩展规律认识不清;(2) 现有压裂技术存在过度改造及改造不充分区域。基于此问题,提出适合深部煤储层改造的多轮次转向缝网弥合压裂技术。首先,分析深部煤层超大规模缝网形成的可行性;其次结合现场压裂数据与微地震监测结果,分析地层曲率、倾角等对压裂裂缝扩展的影响;最后建立应力场计算方法,以此为依据,进行多轮次转向工艺优化及现场试验。在大宁−吉县区块现场进行试验验证,井周微应力场非均匀区域水力裂缝实现了较为均匀的扩展,增大了裂缝整体改造体积,单井产气效果较周边井有明显提升,其中DJ55井5轮次压裂,储层改造体积达到243.6×104 m3,生产340 d累产气量970.5×104 m3,平均日产气量2.85×104 m3,日产量和压力均保持稳定,改造效果较好,预计采收储量(EUR)大于3 000×104 m3,产气潜力较大;JS8-6P05井第1—7段采用2 ~ 3轮次压裂,压后日产气量8.59×104 m3,相比各段均采用单轮次压裂的JS8-6P04井加砂规模降低41.9%、压裂费用降低21%,但2口井水平段千米日产气量相当。试验效果表明,多轮次压裂工艺在一定程度上解决了水平井两侧应力差异而导致的裂缝单侧扩展问题,促进井筒两侧压裂裂缝趋于均匀扩展,极大程度上保障了深部煤储层资源动用程度和压后产量,是深部煤层气压裂工艺降本增效的主要技术途径。

    Abstract:

    The Daning-Jixian block on the eastern margin of the Ordos Basin exhibits high-abundance deep coalbed methane (CBM) resources, well-developed natural fractures of coal reservoirs, well-developed cleats and fractures in coals themselves, coals with excellent structures and high mechanical strength, and strong sealing ability of coal roofs and floors. All these create favorable conditions for the formation of a large-scale fracture network through volume fracturing. The ultra-large-scale fracturing process has contributed to a major breakthrough in the single-well output of deep CBM. However, the tracer monitoring results show that various fracturing stages of horizontal wells exhibited different contribution rates to gas production, there exhibited blind zones of resource production, and expected comprehensive benefits were not achieved. This study proposed two major challenges posed to the formation of ultra-large-scale effective fracture networks in deep coal reservoirs: (1) unclear understanding of fracture propagation patterns in deep coal seams and (2) the presence of areas subjected to over and insufficient stimulation using current fracturing technologies. Given these challenges, this study developed a multi-round diverting fracturing technology to form a merged fracture network for the stimulation of deep coal reservoirs. This technology involved: (1) analyzing the feasibility of the formation of a super-large fracture network of deep coal seams. (2) determining the effects of microstructures, such as the curvatures and dip angles of strata, on fracture propagation based on the field fracturing data and microseismic monitoring results. (3) Establishing a stress field calculation method, which laid the foundation for the process optimization and field experiments of multi-round fracturing diverting. This technology was verified through field experiments in the Daning-Jixian block. The results revealed the uniform propagation of hydraulic fractures in areas with nonuniform micro-stress fields around wells. This uniform propagation increased the overall fractured volume, with single-well gas production in the experiment area significantly improving compared to surrounding wells. Well DJ55, experiencing five rounds of fracturing, exhibited a stimulated reservoir volume of up to 243.6×104 m3, 340-day cumulative gas production of 970.5×104 m3, and an average daily gas production of 2.85×104 m3, with daily gas production and pressure remaining stable. These results indicate excellent stimulation results. With an estimated ultimate recovery greater than 3000×104 m3, this well had great potential for gas production. Well JS8-6P05 in the block yielded a daily gas production of 8.59×104 m3 after 2‒3 rounds of fracturing at fracturing stages 1‒7. Compared to well JS8-6P04, which employed single-round fracturing at each fracturing stage, well JS8-6P05 witnessed reductions in the proppant volume and fracturing cost by 21% and 41.9%, respectively. However, the horizontal sections of both wells produced comparable daily gas production. The experimental results indicate that the multi-round diverting fracturing technology, partially solving the problem that fractures propagate on one side of a horizontal well due to the stress differences on both sides, promotes the uniform propagation of induced fractures on both sides of a wellbore and thus ensures a high production degree and post-fracturing production of deep coal reservoirs. This technology serves as a main technical method for reducing the costs and increasing the efficiency of fracturing technology for deep CBM.

  • 图  1   直丛井泵注参数与产量关系

    Fig.  1   Relationships between the pumping parameters and production of vertical cluster wells

    图  2   欠改造缝网与理想改造缝网

    Fig.  2   Schematic diagrams showing understimulated and ideally stimulated fracture networks

    图  3   JS14-7P04井井底施工压力与地层倾角关系

    Fig.  3   Relationship between the bottomhole treating pressure and formation dip angle at well JS14-7P04

    图  4   JS14-7P04井裂缝长度与地层参数关系

    Fig.  4   Relationships between fracture length and formation parameters at well JS14-7P04

    图  5   JS14-7P04井裂缝长度与地层参数关系(考虑地层倾角差异)

    Fig.  5   Relationships between fracture length and formation parameters at well JS14-7P04 (considering the differences in dip angles of the strata)

    图  6   井底施工压力与累计产量贡献率关系

    Fig.  6   Relationships between bottomhole pressure and contribution rates to cumulative gas production

    图  7   考虑微构造影响的应力模式

    Fig.  7   Stress patterns considering microstructural influence

    图  8   支撑剂导流能力实验

    Fig.  8   Experiments on the impact of proppant grain sizes on fracture conductivity

    图  9   砂量与监测缝网长度及宽度的关系曲线

    Fig.  9   Curves showing the relationships of proppant volume with the length and width of the monitored fracture network

    图  10   DJ55井井筒与周边应力计算结果

    Fig.  10   Calculation results of stress in the wellbore of well DJ55 and its periphery

    图  11   DJ55井压裂监测结果和生产曲线

    Fig.  11   Fracturing monitoring results and production curves of well DJ 55

    图  12   JS8-6P04、JS8-6P05井井筒周边应力差异计算结果

    Fig.  12   Differences in calculated stress of wellbores and their peripheries between wells JS8-6P04 and JS8-6P05

    表  1   中浅部与深部煤层气储层特征对比

    Table  1   Comparison of characteristics of middle-to-shallow and deep coalbed methane reservoirs

    名称 平均地层
    压力/MPa
    孔隙率/% 渗透
    率/10−3 µm2
    弹性模
    量/GPa
    泊松比 脆性指数/% 温度/℃ 含气
    量/(m3·t−1)
    含气饱和度/%
    中浅部煤层气 7.9 3.98 0.27 1.50~2.70 0.27~0.33 10~25 30.5~51.2 12.0 64.0
    深部煤层气 20.0 3.55 0.02 0.75~1.30 0.22~0.28 35~46 61.3~73.4 24.3 93.6
    下载: 导出CSV

    表  2   JS14-7P04井各段裂缝长度监测结果

    Table  2   Monitoring results of fracture lengths in various fracturing stages of well JS14-7P04

    段号 东侧裂缝
    长度/m
    西侧裂缝
    长度/m
    缝网
    宽度/m
    总裂缝
    长度/m
    两侧裂缝
    长度差异/m
    西侧地层
    倾角
    东侧地层
    倾角/(°)
    两侧地层
    倾角差异/(°)
    西侧地层
    曲率
    东侧地层
    曲率
    井底施工
    压力/MPa
    2 180 240 150 420 60 0.56 0.76 0.2 0.000 11 −0.000 03 50.6
    3 210 230 190 440 20 0.65 0.44 0.2 0.000 09 −0.000 04 51.4
    4 170 270 230 440 100 0.87 0.23 0.6 0.000 01 0.000 07 55.0
    5 170 290 170 460 120 1.00 0.38 0.6 0.000 06 0.000 01 53.7
    6 130 260 200 390 130 1.24 0.63 0.6 0.000 01 0.000 01 57.5
    7 170 240 230 410 70 0.94 0.74 0.2 −0.000 16 0.000 13 55.2
    8 180 290 240 470 110 0.97 0.83 0.1 −0.000 14 0.000 12 55.5
    9 190 206 180 396 16 0.61 0.61 0 0.000 11 0.000 03 54.7
    10 140 220 220 360 80 1.57 0.91 0.7 0.000 16 0.000 05 57.9
    11 160 240 230 400 80 1.39 0.79 0.6 −0.000 05 −0.000 07 59.5
    下载: 导出CSV

    表  3   支撑剂导流能力评价实验

    Table  3   Experiments on the evaluation of the impact of proppant grain sizes on fracture conductivity

    实验编号 支撑剂粒径/μm 混合比例
    1 45~75
    2 60~105
    3 105~210
    4 150~300
    5 150~300∶105~210∶60~105 1∶1∶1
    6 1∶4∶5
    7 1∶2∶7
    下载: 导出CSV

    表  4   DJ55井煤层及顶底板岩石力学参数

    Table  4   Rock mechanical parameters of the coal seam at well DJ55 and its roof and floor

    层位泊松比弹性模量/MPa最小主应力/MPa
    顶板0.2423 82454.8
    8号煤0.286 14436.3
    底板0.2716 58045.4
    下载: 导出CSV

    表  5   DJ55井施工参数和压力统计

    Table  5   Statistics of parameters for fracturing operations and operations at well DJ55

    施工轮次 砂量/m3 总液量/m3 平均排量/
    (m3·min−1)
    压裂液体系 支撑剂粒径比例 前置液初期
    井底压力/MPa
    携砂液末期
    井底压力/MPa
    停泵压力/
    MPa
    第1次 410.6 2 941.0 10.0~11.1 变黏滑溜水 60~105 μm∶45~75 μm=1∶3 55.5 40.8 23.4
    第2次 119.2 3 529.2 18.5 变黏滑溜水 60~105 μm 36.9 49.7 37.5
    第3次 392.7 2 801.8 11.1 低伤害胍胶 60~105 μm∶105~210 μm=1.5∶1 45.8 52.4 49.1
    第4次 433.7 2 874.8 10.9 低伤害胍胶 105~210 μm 59.7 49.2 49.1
    第5次 445.4 3 189.0 13.0 低伤害胍胶 105~210 μm∶150~300 μm =1∶1 61.6 40.2 46.2
    下载: 导出CSV

    表  6   DJ55井第2—第5段压裂裂缝参数

    Table  6   Parameters of induced fractures at stages 2‒5 of well DJ55

    段号 缝长/m 半缝长/m 缝高/m 缝网平均宽度/m 方位角/(°) 本次改造
    裂缝体积(SRV)/104 m3
    2 450 E190、W260 10 280 99 117.6
    3 400 E260、W140 10 230 92 92.0
    4 410 E250、W160 10 240 96 98.4
    5 580 E290、W290 10 320 88 164.0
    合计 580 E290、W290 10 420 91 243.6
    下载: 导出CSV

    表  7   JS8-6P04和JS8-6P05井裂缝监测结果

    Table  7   Monitoring results of fractures at wells JS8-6P04 and JS8-6P05

    施工段 西侧裂
    缝长/m
    东侧裂
    缝长/m
    总缝长/m 东−西侧应力
    差/MPa
    东−西侧裂缝
    长度差/m
    应力及天然
    裂缝情况
    工艺
    JS8-6P05-1 147 134 281 2~4 −13 高应力区 多轮次
    JS8-6P05-2 138 158 296 1~3 20 中应力区 多轮次
    JS8-6P05-3 161 192 353 1~2 31 中应力区 多轮次
    JS8-6P05-4 162 151 313 2~3 −11 高应力区 多轮次
    JS8-6P05-5 232 66 298 1~3 −166 高应力区,天然裂缝发育 多轮次
    JS8-6P05-6 167 212 379 2~4 45 高应力区,天然裂缝发育 多轮次
    JS8-6P05-7 158 200 358 3~5 42 高应力区,天然裂缝发育 多轮次
    多轮次绝对值平均
    (不含天然裂缝诱导)
    152 159 311 19
    JS8-6P05-8 195 97 292 2~4 −98 高应力区 单轮次
    JS8-6P05-9 214 137 351 2~3 −77 高应力区 单轮次
    JS8-6P04-1 106 174 280 −4~−2 68 高应力区 单轮次
    JS8-6P04-2 104 203 307 −3~−1 99 高应力区 单轮次
    JS8-6P04-3 112 243 355 0 131 高应力区 单轮次
    JS8-6P04-4 131 175 306 0 44 高应力,天然裂缝发育 单轮次
    JS8-6P04-5 185 224 409 0 39 高应力区,天然裂缝发育 单轮次
    JS8-6P04-6 147 178 325 −2~−1 31 中应力区 单轮次
    JS8-6P04-7 136 248 384 −4~−2 112 中应力区 单轮次
    JS8-6P04-8 105 293 398 −3~−2 188 中应力区,天然裂缝发育 单轮次
    单轮次压裂绝对值平均
    (不含天然裂缝诱导)
    145 183 328 88
    下载: 导出CSV

    表  8   JS8-6P04和05井生产效果对比

    Table  8   Comparison of production outcomes of wells JS8-6P04 and JS8-6P05

    施工段 利用水平
    段长/m
    压裂
    段数
    平均
    段长/m
    加砂强度/
    (t·m−1)
    加液强度/
    (m3·m−1)
    投产
    天数
    累计产气
    量/104 m3
    平均日产
    气量/104 m3
    平均每段日产
    气量/104 m3
    平均千米水平段
    贡献产气量/104 m3
    JS8-6P05 1 300 9 144.4 3.44 23.6 136 1 168 8.59 0.95 898.5
    JS8-6P04 1 197 8 149.6 5.92 22.7 136 1 056 7.76 0.97 882.2
    下载: 导出CSV
  • [1] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68.

    GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.

    [2] 郑民,李建忠,吴晓智,等. 我国主要含油气盆地油气资源潜力及未来重点勘探领域[J]. 地球科学,2019,44(3):833−847.

    ZHENG Min,LI Jianzhong,WU Xiaozhi,et al. Potential of oil and natural gas resources of main hydrocarbon–bearing basins and key exploration fields in China[J]. Earth Science,2019,44(3):833−847.

    [3] 孙德强,高文凯,郑军卫,等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源,2021,43(1):33−38.

    SUN Deqiang,GAO Wenkai,ZHENG Junwei,et al. Bottlenecks restricting the development of coalbed methane in China and policy recommendations[J]. Energy of China,2021,43(1):33−38.

    [4] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.

    NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.

    [5] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.

    ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.

    [6] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118.

    ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118.

    [7] 朱根根,谢志涛,王涛,等. 大宁–吉县区块山西组煤储层微观孔隙结构特征[J]. 煤矿安全,2024,55(8):9−21.

    ZHU Gengen,XIE Zhitao,WANG Tao,et al. Microscopic pore structure characteristics of Shanxi Formation coal reservoir in Daning–Jixian Block[J]. Safety in Coal Mines,2024,55(8):9−21.

    [8] 杨秀春,宋柏荣,陈国辉,等. 大宁–吉县区块深层煤岩多尺度孔缝结构特征[J]. 特种油气藏,2022,29(5):94−100.

    YANG Xiuchun,SONG Bairong,CHEN Guohui,et al. Characteristics of multi–scale pore–fracture structure of deep coal rocks in the Daning–Jixian Block[J]. Special Oil and Gas Reservoirs,2022,29(5):94−100.

    [9] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

    XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

    [10] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.

    XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.

    [11] 高向东,孙昊,王延斌,等. 临兴地区深部煤储层地应力场及其对压裂缝形态的控制[J]. 煤炭科学技术,2022,50(8):140−150.

    GAO Xiangdong,SUN Hao,WANG Yanbin,et al. In–situ stress field of deep coal reservoir in Linxing area and its control on fracturing crack[J]. Coal Science and Technology,2022,50(8):140−150.

    [12] 武瑾,肖玉峰,刘丹,等. 海陆过渡相页岩气储层非均质性及其主控因素:以鄂尔多斯盆地东缘大宁–吉县区块山西组为例[J]. 东北石油大学学报,2022,46(4):12−23.

    WU Jin,XIAO Yufeng,LIU Dan,et al. Heterogeneity of shale gas reservoirs in marine–continental transitional facies and its controlling factors:An example of Shanxi Formation in Daning–Jixian Block on eastern margin of Ordos Basin[J]. Journal of Northeast Petroleum University,2022,46(4):12−23.

    [13] 王成旺,甄怀宾,陈高杰,等. 大宁–吉县区块深部8号煤储层特征及可压裂性评价[J]. 中国煤炭地质,2022,34(2):1−5.

    WANG Chengwang,ZHEN Huaibin,CHEN Gaojie,et al. Assessment of coal No. 8 reservoir features and fracturability in Da ning–Jixian Block deep part[J]. Coal Geology of China,2022,34(2):1−5.

    [14] 邢亚楠,张松航,唐书恒,等. 滇东老厂矿区煤层气储层地应力特征研究[J]. 煤炭科学技术,2020,48(6):199−206.

    XING Yanan,ZHANG Songhang,TANG Shuheng,et al. Study on in–situ stress characteristics of coalbed methane reservoir in Laochang mining area,eastern Yunnan[J]. Coal Science and Technology,2020,48(6):199−206.

    [15] 刘英君,朱海燕,唐煊赫,等. 基于地质工程一体化的煤层气储层四维地应力演化模型及规律[J]. 天然气工业,2022,42(2):82−92.

    LIU Yingjun,ZHU Haiyan,TANG Xuanhe,et al. Four–dimensional in–situ stress model of CBM reservoirs based on geology–engineering integration[J]. Natural Gas Industry,2022,42(2):82−92.

    [16] 刘乃震,张兆鹏,邹雨时,等. 致密砂岩水平井多段压裂裂缝扩展规律[J]. 石油勘探与开发,2018,45(6):1059−1068.

    LIU Naizhen,ZHANG Zhaopeng,ZOU Yushi,et al. Propagation law of hydraulic fractures during multi–staged horizontal well fracturing in a tight reservoir[J]. Petroleum Exploration and Development,2018,45(6):1059−1068.

    [17] 孙健,刘伟,惠徐宁,等. 煤层气储层地应力特征及其对压裂效果的影响[J]. 钻采工艺,2017,40(6):45−48.

    SUN Jian,LIU Wei,HUI Xuning,et al. Characteristics of in–situ stress at coalbed methane reservoir and its effects on fracturing results[J]. Drilling and Production Technology,2017,40(6):45−48.

    [18] 游敬熙,翁晓卫. 水力压裂力学(第二版)[M]. 北京:石油工业出版社,2019.
    [19] 霍志星. 深层煤层气压裂技术的研究与应用[J]. 化工管理,2017(16):189.

    HUO Zhixing. Research and application of deep coal seam pressure fracturing technology[J]. Chemical Engineering Management,2017(16):189.

    [20] 张军涛,郭庆,汶锋刚. 深层煤层气压裂技术的研究与应用[J]. 延安大学学报(自然科学版),2015,34(1):78−80.

    ZHANG Juntao,GUO Qing,WEN Fenggang. Research and application of deep coal bed methane fracturing technology[J]. Journal of Yan’an University (Natural Science Edition),2015,34(1):78−80.

    [21] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.

    YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.

    [22] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296.

    YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology–engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.

    [23] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1−11.

    WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of south Yanchuan[J]. Petroleum Reservoir Evaluation and Development,2020,10(4):1−11.

    [24] 智慧文,胡永章. 元坝气田地应力测井计算研究[J]. 物探化探计算技术,2015,37(6):743−748.

    ZHI Huiwen,HU Yongzhang. Study on well logging with crustal stress calculation in Yuanba gas field[J]. Computing Techniques for Geophysical and Geochemical Exploration,2015,37(6):743−748.

    [25] 赵海峰,陈勉,金衍,等. 页岩气藏网状裂缝系统的岩石断裂动力学[J]. 石油勘探与开发,2012,39(4):465−470.

    ZHAO Haifeng,CHEN Mian,JIN Yan,et al. Rock fracture kinetics of the fracture mesh system in shale gas reservoirs[J]. Petroleum Exploration and Development,2012,39(4):465−470.

    [26] 白岳松,胡耀青,李杰. 压裂液黏度和注液速率对含层理页岩水力裂缝扩展行为的影响规律研究[J]. 煤矿安全,2023,54(12):18−24.

    BAI Yuesong,HU Yaoqing,LI Jie. Study on the influence law of fracturing fluid viscosity and liquid injection rate on propagation behavior of hydraulic fractures in laminated shale[J]. Safety in Coal Mines,2023,54(12):18−24.

    [27] 常闯,李松,汤达祯,等. 基于测井参数的煤储层地应力计算方法研究:以延川南区块为例[J]. 煤田地质与勘探,2023,51(5):23−32.

    CHANG Chuang,LI Song,TANG Dazhen,et al. In–situ stress calculation for coal reservoirs based on log parameters:A case study of the southern Yanchuan Block[J]. Coal Geology & Exploration,2023,51(5):23−32.

    [28] 王理国,唐兆青,李玉魁,等. 煤层气井层内转向压裂技术研究与应用[J]. 煤田地质与勘探,2018,46(2):8−14.

    WANG Liguo,TANG Zhaoqing,LI Yukui,et al. Research and application of deflection fracturing technology in coalbed methane well[J]. Coal Geology & Exploration,2018,46(2):8−14.

    [29] 程相征. 塔河油田酸压暂堵转向研究[D]. 北京:中国石油大学(北京),2017.

    CHENG Xiangzheng. A research on temporary plugging–divertion of acid fracturing in Tahe oilfield[D]. Beijing:China University of Petroleum(Beijing),2017.

    [30] 苏现波,范渐,王然,等. 煤储层水力压裂裂缝内支撑剂运移控制因素实验研究[J]. 煤田地质与勘探,2023,51(6):62−73.

    SU Xianbo,FAN Jian,WANG Ran,et al. An experimental study on factors controlling the proppant transport in hydraulic fractures of coal reservoirs[J]. Coal Geology & Exploration,2023,51(6):62−73.

    [31] 毛金成,卢伟,张照阳,等. 暂堵重复压裂转向技术研究进展[J]. 应用化工,2018,47(10):2202−2206.

    MAO Jincheng,LU Wei,ZHANG Zhaoyang,et al. Research and development of demporary plugging diverting technology for reservoir re–stimulation[J]. Applied Chemical Industry,2018,47(10):2202−2206.

    [32]

    MENG Yanjun,TANG Dazhen,XU Hao,et al. Geological controls and coalbed methane production potential evaluation:A case study in Liulin area,eastern Ordos Basin,China[J]. Journal of Natural Gas Science and Engineering,2014,21:95−111. DOI: 10.1016/j.jngse.2014.07.034

    [33]

    YAO Yanbin,LIU Dameng,YAN Taotao. Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field,southeastern Ordos Basin[J]. International Journal of Coal Geology,2014,121:148−159. DOI: 10.1016/j.coal.2013.11.006

    [34]

    ARBATAN T,FANG Xiya,SHEN Wei. Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean–ups[J]. Chemical Engineering Journal,2011,166(2):787−791. DOI: 10.1016/j.cej.2010.11.015

图(12)  /  表(8)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  22
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2024-01-17
  • 录用日期:  2024-02-24
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回