煤矿井下坑道钻机远程服务平台开发

刘世杰, 燕斌, 姚克, 代晨昱, 关志阳, 王龙鹏, 李坚, 朱钱祥

刘世杰,燕斌,姚克,等. 煤矿井下坑道钻机远程服务平台开发[J]. 煤田地质与勘探,2023,51(9):121−128. DOI: 10.12363/issn.1001-1986.23.07.0401
引用本文: 刘世杰,燕斌,姚克,等. 煤矿井下坑道钻机远程服务平台开发[J]. 煤田地质与勘探,2023,51(9):121−128. DOI: 10.12363/issn.1001-1986.23.07.0401
LIU Shijie,YAN Bin,YAO Ke,et al. Development of remote service platform for underground tunnel drilling rigs of coal mine[J]. Coal Geology & Exploration,2023,51(9):121−128. DOI: 10.12363/issn.1001-1986.23.07.0401
Citation: LIU Shijie,YAN Bin,YAO Ke,et al. Development of remote service platform for underground tunnel drilling rigs of coal mine[J]. Coal Geology & Exploration,2023,51(9):121−128. DOI: 10.12363/issn.1001-1986.23.07.0401

 

煤矿井下坑道钻机远程服务平台开发

基金项目: 天地科技股份有限公司科技创新创业资金项目(2021-TM-MS006);天地科技股份有限公司科技创新创业资金专项项目(2022-3-TD-KJHZ004)
详细信息
    作者简介:

    刘世杰,1997年生,男,山西吕梁人,硕士,实习研究员,从事煤矿井下钻探设备研发与推广应用工作.E-mail:liushijie@cctegxian.com

  • 中图分类号: TD41

Development of remote service platform for underground tunnel drilling rigs of coal mine

Funds: National Key R&D Program of China(2018YFC0808005)
  • 摘要:

    针对煤矿井下钻场人员需求大、安全隐患多、一人操作难以同时控制钻机动作并从全局视角知悉钻机运行状态等问题,引入了数字孪生技术,设计开发了钻机远程服务平台。该平台系统以ZDY25000LDK钻机为载体,融合了钻机远程控制系统、数字孪生模型和参数监测系统3方面技术,通过检测与执行层、数据传输层和远程集控层实现钻机远程控制、钻机运行全生命周期映射与参数监测。钻机远程控制系统实现了实时远距离控制钻机,数字孪生模型能够映射钻机各运动部件的运动状态,并能通过仿真实验为钻探施工提供先验参考,参数监测系统实现了对钻机状态参数和钻进参数的实时监测。基于该钻机远程服务平台,进行了平台的功能性和实时性验证。试验结果表明:钻机远程服务平台能够实现钻机远程控制,并从全局视角上映射和监测钻机运行状态和参数,通过数字孪生体仿真,得出钻机上扣过程中动力头回转速度和给进速度的最优比值为4.28,与实际上扣情况相符。平台操作方便、实时性高、可靠性好、人机交互友好,为煤矿井下钻探工作的减人增效和智能化升级提供了解决方案。

    Abstract:

    In view of the large demand for personnel in the underground coal mine drilling site, many potential safety hazards, and the difficulty of controlling the movement of the drilling rig by one-man operation and knowing the operating status of the drilling rig from a global perspective, the digital twin technology has benn introduced to design and develop a remote service platform for the drilling rig. Based on the ZDY25000LDK drilling rig, the platform system integrates the technologies concerning the remote control system of the drilling rig, the digital twin model and parameter monitoring system, with the remote control of the drilling rig, the whole life cycle mapping of the rig operation and parameter monitoring realized by the sensing and execution layer, data transmission layer and remote centralized control layer. Specifically, the remote control system of the drilling rig can control the drilling rig remotely in real time. The digital twin model can map the movement state of each moving part of the drilling rig, and can provide a priori reference for drilling construction through simulation experiments. The parameter monitoring system can realize the real-time monitoring of the state and drilling parameters of drilling rig. Thus, the remote service platform of the drilling rig had its functionality and real-timeness verified. The experimental results show that the remote service platform of the drilling rig can control the drilling rig remotely, as well as map and monitor the operating status and parameters of the drilling rig from a global perspective. The optimal ratio of the rotary speed and the feed speed of the power head during the make-up process of the drilling rig obtained through the digital twin simulation is 4.28, which is consistent with the actual make-up situation. Generally, the platform has the advantages of convenient operation, high real-timeness, good reliability, and friendly human-computer interaction, etc., providing a solution for reducing manpower, increasing efficiency and intelligent upgrading of coal mine drilling.

  • 图  1   ZDY25000LDK钻机及杆车

    Fig.  1   ZDY25000LDK drilling rig and rod car

    图  2   钻机远程服务平台总体方案

    Fig.  2   Overall scheme of remote service platform for drilling rig

    图  3   控制面板样机

    Fig.  3   Prototype of control panel

    图  4   控制面板控制系统

    Fig.  4   Control system of control panel

    图  5   远程控制系统架构

    Fig.  5   Architecture of remote control system

    图  6   ZDY25000LDK钻机系统程序结构

    注:A1为模拟信号输入;D1为数字信号输入;AO为模拟信号输出;DO为数字信号输出。

    Fig.  6   Structure of ZDY25000LDK drilling rig system control program

    图  7   数字孪生模型架构

    Fig.  7   Digital twin model framework

    图  8   参数监测系统设计逻辑

    Fig.  8   Design logic of parameter monitoring system

    图  9   参数监测系统界面

    Fig.  9   Interface of parameter monitoring system

    图  10   钻机远程服务平台试验

    Fig.  10   Experiment of remote service platform for drilling rig

    图  11   数字孪生模型试验验证

    Fig.  11   Experimental validation of digital twin

    表  1   远程控制时钻机动作延时统计表

    Table  1   Statistics on action delay of rig under remote control

    序号首次动作延时/s后续动作延时/s
    11.2<0.5
    21.5<0.5
    30.8<0.5
    41.6<0.5
    51.2<0.5
    61.2<0.5
    71.8<0.5
    81.0<0.5
    92.0<0.5
    101.3<0.5
    下载: 导出CSV
  • [1] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R]. 北京: 中国煤炭工业协会, 2023.
    [2] 王清峰,辛德忠,陈航. 煤矿井下自动化钻探技术概况与智能化发展前瞻[J]. 智能矿山,2020,1(1):71−77.

    WANG Qingfeng,XIN Dezhong,CHEN Hang. Overview of automatic drilling technology in underground coal mine and prospect of intelligent development[J]. Journal of Intelligent Mine,2020,1(1):71−77.

    [3] 范超军,王一琦,杨雷,等. 2012–2021年我国煤矿安全事故统计与规律分析[J]. 矿业研究与开发,2023,43(4):182−188.

    FAN Chaojun,WANG Yiqi,YANG Lei,et al. Statistics and regularity analysis of coal mine safety accidents from 2012 to 2021[J]. Mining Research and Development,2023,43(4):182−188.

    [4] 石智军,姚克,田宏亮,等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术,2019,47(5):22−28.

    SHI Zhijun,YAO Ke,TIAN Hongliang,et al. Present situation and prospect of directional drilling technology and equipment while drilling measurement in underground coal mine[J]. Coal Science and Technology,2019,47(5):22−28.

    [5] 王龙鹏. ZDY850LK型煤矿坑道用远控钻机液压系统设计[J]. 煤矿机械,2014,35(7):151−153.

    WANG Longpeng. Hydraulic system design for ZDY850LK type coal mine tunnel used remote-controlled drilling rig[J]. Coal Mine Machinery,2014,35(7):151−153.

    [6] 张阳阳,姚宁平,董洪波等. 煤矿全液压钻机状态监测系统的设计与实验[J]. 煤矿机械,2014,35(3):183−186.

    ZHANG Yangyang,YAO Ningping,DONG Hongbo,et al. Design of condition monitoring system for coal mine hydraulic drilling rig[J]. Coal Mine Machinery,2014,35(3):183−186.

    [7] 刘庆修. ZDY850LK煤矿坑道用远控钻机[J]. 煤矿安全,2018,49(1):139−141.

    LIU Qingxiu. ZDY850LK type remote-controlled drilling rig for coal mine underground[J]. Safety in Coal Mines,2018,49(1):139−141.

    [8] 王天龙,马斌,董洪波. 煤矿用自动化钻机远程监测系统研制[J]. 煤田地质与勘探,2022,50(1):80−85. DOI: 10.12363/issn.1001-1986.21.12.0723

    WANG Tianlong,MA Bin,DONG Hongbo. Development of a remote monitoring system for coal mine automatic drilling rigs[J]. Coal Geology & Exploration,2022,50(1):80−85. DOI: 10.12363/issn.1001-1986.21.12.0723

    [9] 要振国. 井下钻机电液远程控制系统设计[J]. 机电工程技术,2020,49(10):205−206. DOI: 10.3969/j.issn.1009-9492.2020.10.065

    YAO Zhenguo. Design of electro–hydraulic remote control system for underground drilling rig[J]. Mechanical & Electrical Engineering Technology,2020,49(10):205−206. DOI: 10.3969/j.issn.1009-9492.2020.10.065

    [10] 边惠东. 矿用坑道远程控制钻机的设计及应用[J]. 机械管理开发,2019,34(7):17−18. DOI: 10.16525/j.cnki.cn14-1134/th.2019.07.008

    BIAN Huidong. Design and application of remote control drilling rig for mine tunnel[J]. Mechanical Management and Development,2019,34(7):17−18. DOI: 10.16525/j.cnki.cn14-1134/th.2019.07.008

    [11] 方鹏,姚克,邵俊杰,等. 履带式中深孔定向钻进装备设计关键技术研究[J]. 煤炭科学技术,2018,46(4):71−75. DOI: 10.13199/j.cnki.cst.2018.04.012

    FANG Peng,YAO Ke,SHAO Junjie,et al. Research on key technology of the design of tracked directional drilling equipment for medium–deep borehole[J]. Coal Science and Technology,2018,46(4):71−75. DOI: 10.13199/j.cnki.cst.2018.04.012

    [12] 翁寅生. 煤矿井下坑道钻机CAN总线通信系统[J]. 煤矿机械,2013,34(2):224−226. DOI: 10.13436/j.mkjx.2013.02.005

    WENG Yinsheng. CAN bus communication system of tunnel drilling rig in coal mine[J]. Coal Mine Machinery,2013,34(2):224−226. DOI: 10.13436/j.mkjx.2013.02.005

    [13] 邢望. 车载钻机电液控制系统优化设计[J]. 煤矿机械,2023,44(1):125−127.

    XING Wang. Optimal design of electro–hydraulic control system for truck–mounted drilling rig[J]. Coal Mine Machinery,2023,44(1):125−127.

    [14] 乔喆. 基于STM32F103ZET6处理器的低压电气设备监测系统设计[J]. 煤矿机电,2019,40(6):18−21. DOI: 10.16545/j.cnki.cmet.2019.06.005

    QIAO Zhe. Design of monitoring system of low voltage electrical equipment based on processor STM32F103ZET6[J]. Colliery Mechanical & Electrical Technology,2019,40(6):18−21. DOI: 10.16545/j.cnki.cmet.2019.06.005

    [15] 童建林,彭燕华. CoDeSys在开放式PLC系统中的应用[J]. 电工技术,2013(7):38−39. DOI: 10.3969/j.issn.1002-1388.2013.07.018

    TONG Jianlin,PENG Yanhua. Application of CoDeSys in open PLC system[J]. Electric Engineering,2013(7):38−39. DOI: 10.3969/j.issn.1002-1388.2013.07.018

    [16] 赵良,殷新胜,翁寅生. 基于CoDeSys 的坑道钻机参数监控系统设计[J]. 煤炭工程,2016,48(2):56−58.

    ZHAO Liang,YIN Xinsheng,WENG Yinsheng. Design on parameter monitoring system of tunnel drilling rig based on CoDeSys[J]. Coal Engineering,2016,48(2):56−58.

    [17] 陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1−15. DOI: 10.13196/j.cims.2021.01.001

    TAO Fei,ZHANG He,QI Qinglin,et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems,2021,27(1):1−15. DOI: 10.13196/j.cims.2021.01.001

    [18] 吴雁,王晓军,何勇,等. 数字孪生在制造业中的关键技术及应用研究综述[J]. 现代制造工程,2021(9):137−145. DOI: 10.16731/j.cnki.1671-3133.2021.09.023

    WU Yan,WANG Xiaojun,HE Yong,et al. Review on the technology and application of digital twin in manufacturing industry[J]. Modern Manufacturing Engineering,2021(9):137−145. DOI: 10.16731/j.cnki.1671-3133.2021.09.023

    [19] 方斌. OPENGL中3DMAX模型的应用[J]. 贵州工业大学学报(自然科学版),1999,28(6):45−49.

    FANG Bin. The application of 3DMAX modelling to OPENGL[J]. Journal of Guizhou University of Technology (Natural Science Edition),1999,28(6):45−49.

    [20] 韩慧彦. 基于Three. js的智能制造车间数字孪生系统的网页编程设计[J]. 现代工业经济和信息化,2022,12(7):103−105.

    HAN Huiyan. Web programming design of 3D model for forming equipment digital twin system[J]. Modern Industrial Economy and Informationization,2022,12(7):103−105.

    [21] 汪杰,王春华,李晓华,等. 煤炭行业大数据分析云平台设计研究[J]. 煤炭工程,2021,53(9):187−192.

    WANG Jie,WANG Chunhua,LI Xiaohua,et al. Design and research on big data analysis cloud platform of coal industry[J]. Coal Engineering,2021,53(9):187−192.

    [22] 宋璐,吕畅,胡鹰. 基于B/S的大型设备全周期运维系统的设计与应用[J]. 现代工业经济和信息化,2022,12(7):34−36.

    SONG Lu,LYU Chang,HU Ying. Design of large scale equipment complete period running and maintenance system based on B/S[J]. Modern Industrial Economy and Informationization,2022,12(7):34−36.

    [23] 文胜,丁华,李娟莉,等. 基于Web的矿井提升机知识管理系统[J]. 工矿自动化,2016,42(9):77−79. DOI: 10.13272/j.issn.1671-251x.2016.09.019

    WEN Sheng,DING Hua,LI Juanli,et al. Mine hoist knowledge management system based on Web[J]. Industry and Mine Automation,2016,42(9):77−79. DOI: 10.13272/j.issn.1671-251x.2016.09.019

    [24] 张蒙蒙,曹成茂. 大数据时代Redis缓存的性能分析与优化[J]. 巢湖学院学报,2022,24(3):80−87. DOI: 10.12152/j.issn.1672-2868.2022.03.012

    ZHANG Mengmeng,CAO Chengmao. Performance analysis and optimization of Redis cache in the era of big data[J]. Journal of Chaohu University,2022,24(3):80−87. DOI: 10.12152/j.issn.1672-2868.2022.03.012

  • 期刊类型引用(2)

    1. 关志阳. 基于双目视觉的机器人钻杆抓取系统研究. 煤矿机械. 2025(02): 222-224 . 百度学术
    2. 王清峰,刘洋,陈航,史书翰,崔小超. 煤矿井下钻进工况参数智能控制技术发展与展望. 矿业安全与环保. 2025(01): 20-29 . 百度学术

    其他类型引用(0)

图(11)  /  表(1)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  12
  • PDF下载量:  41
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-08-21
  • 网络出版日期:  2023-09-10
  • 刊出日期:  2023-09-14

目录

    /

    返回文章
    返回