激光热裂砂岩可钻性及力学参数特征研究

杨磊, 杨本高, 刘军军, 周雪敏, 谢晶, 王晨, 郭辰辰, 高明忠

杨磊,杨本高,刘军军,等. 激光热裂砂岩可钻性及力学参数特征研究[J]. 煤田地质与勘探,2023,51(8):171−180. DOI: 10.12363/issn.1001-1986.23.06.0367
引用本文: 杨磊,杨本高,刘军军,等. 激光热裂砂岩可钻性及力学参数特征研究[J]. 煤田地质与勘探,2023,51(8):171−180. DOI: 10.12363/issn.1001-1986.23.06.0367
YANG Lei,YANG Bengao,LIU Junjun,et al. Drillability and mechanical parameters of laser hot cracking sandstones[J]. Coal Geology & Exploration,2023,51(8):171−180. DOI: 10.12363/issn.1001-1986.23.06.0367
Citation: YANG Lei,YANG Bengao,LIU Junjun,et al. Drillability and mechanical parameters of laser hot cracking sandstones[J]. Coal Geology & Exploration,2023,51(8):171−180. DOI: 10.12363/issn.1001-1986.23.06.0367

 

激光热裂砂岩可钻性及力学参数特征研究

基金项目: 煤炭资源高效开采与洁净利用国家重点实验室开放基金项目(2021-CMCU-KFZD001);四川省自然科学基金重大项目(2023NSFSC0004)
详细信息
    作者简介:

    杨磊,1999年生,男,四川泸州人,硕士,研究方向为岩土工程. E-mail:yanglei_gold@163.com

    通讯作者:

    杨本高,1997年生,男,安徽马鞍山人,博士,研究方向为岩土工程. E-mail:yangbgao@126.com

  • 中图分类号: O532+.25;P634

Drillability and mechanical parameters of laser hot cracking sandstones

  • 摘要:

    目前浅部易开采煤炭资源逐渐枯竭,传统钻进技术在深层煤炭资源勘探开发时往往面临破岩效率低、钻进成本高和环境污染等问题。因此,亟需引入新型辅助钻井破岩技术破解此类难题。聚焦于新型激光辅助破岩技术,以坚硬砂岩为研究对象,系统开展了不同时长激光作用后砂岩的力学、可钻性试验,旨在探究激光作用下坚硬砂岩温度场时空演变特性、砂岩表面裂纹的扩展特征及力学参数和钻进效率。结果表明,随着激光作用时间的增加,砂岩表面裂纹由2条逐渐扩展为5条,裂纹面积由6.78 mm2增加到36.85 mm2;温度场的演化特征符合高斯分布规律,由热熔融区向低热区呈环状递减,激光照射15 s后达到热平衡,温度场演化趋于稳定;激光照射50 s后砂岩抗压强度、弹性模量降幅最高分别可达74.6%、92.7%,轴向峰值应变从0.52%不断增加到1.65%,表明岩石经激光作用后呈现由弹性状态向半塑性/塑性状态转变的趋势;激光作用50 s后砂岩进尺速率由0.09 mm/s增加到4.30 mm/s,失重比由2.73%增加到27.36%;合理设置激光参数有助于提高破岩效率与降低钻进成本,在照射20 s时砂岩进尺速率和失重比增幅最大,此时可达到更快更经济的破岩目的;研究初步论证了激光辅助破岩技术的高效性与可行性,为深部高效破岩钻进技术提供理论基础。

    Abstract:

    Over recent years, shallow coal resources that can be easily mined have been gradually exhausted. As a result, conventional drilling techniques tend to face challenges such as low rock-breaking efficiency, high drilling costs, and environmental pollution in the exploration and exploitation of deep coal resources. Therefore, there is an urgent need to introduce a new auxiliary rock-breaking technique for drilling. Focusing on the new laser-assisted rock-breaking technology, this study systematically conducted mechanical and drillability tests on sandstones after laser irradiation for different durations, aiming to explore the temporal and spatial evolution of the temperature field of hard sandstones, the propagation of cracks on the sandstone surfaces, and the mechanical parameters and drilling efficiency of sandstones under laser irradiation. The results are as follows. (1) With an increase in laser irradiation time, the number of cracks on the sandstone surface gradually increased from two to five, with the cracking area increasing from 6.78 mm2 to 36.85 mm2. (2) The evolution of the temperature field exhibited the Gaussian distribution, presenting a circular decrement from the hot-melt zone to the low-heat zone. After 15 s of laser irradiation, the thermal equilibrium was reached, with the evolution of the temperature field tending to be stabilized. (3) After 50 s of laser irradiation, the compressive strength and elastic modulus of sandstones decreased by up to 74.6% and 92.7%, respectively, and the axial peak strain increased from 0.52% to 1.65%. These results indicate that sandstones shifted from an elastic state to a semiplastic/plastic state after laser irradiation. (4) After 50 s of laser irradiation, the penetration rate of sandstones increased from 0.09 mm/s to 4.30 mm/s, and the weight loss ratio increased from 2.73% to 27.36%. (5) Appropriately setting laser parameters could improve rock-breaking efficiency and reduce drilling costs. The penetration rate and weight loss ratio of sandstones increased the most after 20 s of laser irradiation, when fast and economical rock-breaking could be achieved. This study preliminarily demonstrates the efficiency and feasibility of the laser-assisted rock-breaking technique, thus providing a theoretical basis for efficient rock-breaking in deep drilling.

  • 图  1   试验设备系统

    Fig.  1   Experimental equipment system

    图  2   砂岩试样

    Fig.  2   Sandstone specimens

    图  3   砂岩试样XRD图谱及矿物成分

    Fig.  3   XRD pattern and mineral composition of sandstone specimens

    图  4   GCTS RTX-1000L岩石力学试验系统

    Fig.  4   GCTS RTX-1000L rock mechanics test system

    图  5   激光辅助破岩岩样宏观裂纹形貌

    Fig.  5   Macroscopic morphologies of cracks laser-assisted rock breaking specimens

    图  6   激光照射裂纹及裂纹面积变化曲线

    Fig.  6   Laser irradiation time vs. cracking area

    图  7   激光照射岩石后温度分布特征

    Fig.  7   Temperature distribution characteristics after laser irradiation of sandstone

    图  8   激光照射后砂岩全应力–应变曲线

    Fig.  8   Complete stress-strain curves of sandstones after laser irradiation

    图  9   砂岩力学参数–激光作用时长演化特征

    Fig.  9   Time evolution characteristics of mechanical parameters of sandstones vs. laser irradiation

    图  10   PDC钻头进尺曲线

    Fig.  10   Penetration curves of the PDC bit

    图  11   进尺速率影响曲线

    Fig.  11   Influence curves of penetration rate

    图  12   激光−可钻性实验试验岩屑特征

    Fig.  12   Detritus characteristics in the laser-drillability test

    表  1   砂岩试样的物理参数

    Table  1   Physical parameters of sandstone specimens

    密度
    ρ/(g·cm−3)
    泊松比
    ν
    抗压强度
    σ/MPa
    弹性模量
    Ε/GPa
    导热系数/
    (W·m−1·K−1)
    热膨胀系数/
    −1
    2.450.11127.8027.324.96332.66
    下载: 导出CSV

    表  2   激光−力学试验组方案

    Table  2   Laser-mechanical test scheme

    试样数量试样尺寸/
    (mm×mm)
    激光
    功率/kW
    光斑
    直径/mm
    照射
    时间
    /s
    1050×1001410/20/30/40/50
    下载: 导出CSV

    表  3   激光−可钻性试验组方案

    Table  3   Laser-drillability test scheme

    试样
    数量
    试样
    尺寸/
    (mm×mm)
    钻压/
    kN
    转速/
    (r·min−1)
    进尺/
    mm
    激光
    功率/kW
    光斑
    直径/
    mm
    照射
    时间/s
    1050×500.55541410/20/30/40/50
    下载: 导出CSV
  • [1]

    GAO Mingzhong,YANG Bengao,XIE Jing,et al. The mechanism of microwave rock breaking and its potential application to rock–breaking technology in drilling[J]. Petroleum Science,2022,19(3):1110−1124. DOI: 10.1016/j.petsci.2021.12.031

    [2]

    GAO Mingzhong,HAO Haichun,XUE Shouning,et al. Discing behavior and mechanism of cores extracted from Songke–2 well at depths below 4,500 m[J]. International Journal of Rock Mechanics and Mining Sciences,2022,149:104976. DOI: 10.1016/j.ijrmms.2021.104976

    [3]

    TANG Maoying,GAO Mingzhong,LI Shuwu,et al. Failure behavior and energy evolution characteristics of deep roadway sandstone under different microwave irradiation modes[J]. Journal of Central South University,2023,30(1):214−226. DOI: 10.1007/s11771-023-5237-4

    [4]

    GAO Mingzhong,LI Hongmei,ZHAO Yun,et al. Mechanism of micro–wetting of highly hydrophobic coal dust in underground mining and new wetting agent development[J]. International Journal of Mining Science and Technology,2023,33(1):31−46. DOI: 10.1016/j.ijmst.2022.11.003

    [5]

    GAO Mingzhong,XIE Jing,GAO Ya’nan,et al. Mechanical behavior of coal under different mining rates:A case study from laboratory experiments to field testing[J]. International Journal of Mining Science and Technology,2021,31(5):825−841. DOI: 10.1016/j.ijmst.2021.06.007

    [6]

    GAO Mingzhong, XIE Jing, GUO Jun, et al. Fractal evolution and connectivity characteristics of mining−induced crack networks in coal masses at different depths[J]. Geomechanics and Geophysics for Geo–Energy and Geo–Resources, 2021, 7(1): 1−20.

    [7]

    GAO Mingzhong, ZHOU Xuemin, WANG Xuan, et al. Mechanical behavior of coal under true triaxial loading test connecting the effect of excavation−and mining−induced disturbances[J]. Geomechanics and Geophysics for Geo−Energy and Geo−Resources, 2023, 9(1): 1−15.

    [8] 汪海阁,黄洪春,毕文欣,等. 深井超深井油气钻井技术进展与展望[J]. 天然气工业,2021,41(8):163−177. DOI: 10.3787/j.issn.1000-0976.2021.08.015

    WANG Haige,HUANG Hongchun,BI Wenxin,et al. Deep and ultra–deep oil/gas well drilling technologies:Progress and prospect[J]. Natural Gas Industry,2021,41(8):163−177. DOI: 10.3787/j.issn.1000-0976.2021.08.015

    [9]

    JAMALI S,WITTIG V,BÖRNER J,et al. Application of high powered laser technology to alter hard rock properties towards lower strength materials for more efficient drilling,mining,and geothermal energy production[J]. Geomechanics for Energy and the Environment,2019,20:100112. DOI: 10.1016/j.gete.2019.01.001

    [10]

    YANG Bengao,GAO Mingzhong,XIE Jing,et al. Exploration of weakening mechanism of uniaxial compressive strength of deep sandstone under microwave irradiation[J]. Journal of Central South University,2022,29(2):611−623. DOI: 10.1007/s11771-022-4910-3

    [11]

    YANG Bengao, XIE Jing, YANG Yiming, et al. Anisotropy and size effect of the fractal characteristics of rock fracture surfaces under microwave irradiation: An experimental research[J/OL]. Fractals, 2022: 1−16[2023-07-23]. DOI: 10. 1142/S0218348X23401230.

    [12] 张毅,李皋,王希勇,等. 川西须家河组致密砂岩高温后微组构特征及对力学性能的影响[J]. 岩石力学与工程学报,2021,40(11):2249−2259. DOI: 10.13722/j.cnki.jrme.2021.0135

    ZHANG Yi,LI Gao,WANG Xiyong,et al. Microfabric characteristics of tight sandstone of Xujiahe Formation in western Sichuan after high temperature and the effect on mechanical properties[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(11):2249−2259. DOI: 10.13722/j.cnki.jrme.2021.0135

    [13] 马卫国,杨增辉,易先中,等. 国内外激光钻井破岩技术研究与发展[J]. 石油矿场机械,2008,37(11):11−17. DOI: 10.3969/j.issn.1001-3482.2008.11.003

    MA Weiguo,YANG Zenghui,YI Xianzhong,et al. Current progresses on laser drilling technology[J]. Oil Field Equipment,2008,37(11):11−17. DOI: 10.3969/j.issn.1001-3482.2008.11.003

    [14] 徐依吉,周长李,钱红彬,等. 激光破岩方法研究及在石油钻井中的应用展望[J]. 石油钻探技术,2010,38(4):129−134.

    XU Yiji,ZHOU Changli,QIAN Hongbin,et al. The study of laser rock breaking method and its application in well drilling[J]. Petroleum Drilling Techniques,2010,38(4):129−134.

    [15] 闫静,王德贵,左永强,等. 激光钻井技术进展及其关键技术[J]. 机械工程师,2021(1):88−90.

    YAN Jing,WANG Degui,ZUO Yongqiang,et al. Development status and key technologies of laser drilling technology[J]. Mechanical Engineer,2021(1):88−90.

    [16]

    DANESHPOUR S,DYCK J,VENTZKE V,et al. Crack retardation mechanism due to overload in base material and laser welds of Al alloys[J]. International Journal of Fatigue,2012,42:95−103. DOI: 10.1016/j.ijfatigue.2011.07.010

    [17]

    LI Zifeng. Criteria for jet cavitation and cavitation jet drilling[J]. International Journal of Rock Mechanics and Mining Sciences,2014,71:204−207. DOI: 10.1016/j.ijrmms.2014.03.021

    [18] 罗鸣,冯永存,桂云,等. 高温高压钻井关键技术发展现状及展望[J]. 石油科学通报,2021,6(2):228−244.

    LUO Ming,FENG Yongcun,GUI Yun,et al. Development status and prospect of key technologies for high temperature and high pressure drilling[J]. Petroleum Science Bulletin,2021,6(2):228−244.

    [19]

    KARIMINEZHAD H,AMANI H,MOOSAPOOR M. A laboratory study about laser perforation of concrete for application in oil and gas wells[J]. Journal of Natural Gas Science and Engineering,2016,32:566−573. DOI: 10.1016/j.jngse.2016.04.060

    [20]

    FU Fuxing,ZHANG Yanli,CHANG Gengrong,et al. Analysis on the physical mechanism of laser cladding crack and its influence factors[J]. Optik,2016,127(1):200−202. DOI: 10.1016/j.ijleo.2015.10.043

    [21]

    ZHENG Y L,ZHANG Q B,ZHAO J. Effect of microwave treatment on thermal and ultrasonic properties of gabbro[J]. Applied Thermal Engineering,2017,127:359−369. DOI: 10.1016/j.applthermaleng.2017.08.060

    [22]

    BAKHTBIDAR M,HAFIZI R,BAKHTBIDAR M,et al. Effectiveness assessment of a new advanced laser perforation technique for improving well productivity[J]. Optics and Laser Technology,2020,129:106301. DOI: 10.1016/j.optlastec.2020.106301

    [23]

    HU Mingxuan,BAI Yang,CHEN Haowei,et al. Engineering characteristics of laser perforation with a high power fiber laser in oil and gas wells[J]. Infrared Physics & Technology,2018,92:103−108.

    [24] 郭辰光,孙瑜,岳海涛,等. 激光辐照热裂破岩规律及力学性能[J]. 煤炭学报,2022,47(4):1734−1742.

    GUO Chenguang,SUN Yu,YUE Haitao,et al. Law and mechanics of thermal cracking of rock by laser irradiation[J]. Journal of China Coal Society,2022,47(4):1734−1742.

    [25]

    NDEDA R A,SEBUSANG S E,MARUMO R,et al. Numerical model of laser spallation drilling of inhomogeneous rock[J]. IFAC–PapersOnLine,2017,50(2):43−46.

    [26]

    LI Qin,ZHAI Yuli,HUANG Zhiqiang,et al. Research on crack cracking mechanism and damage evaluation method of granite under laser action[J]. Optics Communications,2022,506:127556. DOI: 10.1016/j.optcom.2021.127556

    [27]

    KUANG Lianfei,SUN Lipeng,YU Dongxu,et al. Experimental investigation on compressive strength,ultrasonic characteristic and cracks distribution of granite rock irradiated by a moving laser beam[J]. Applied Sciences,2022,12(20):10681. DOI: 10.3390/app122010681

    [28]

    GUO Chenguang,SUN Yu,YUE Haitao,et al. Experimental research on laser thermal rock breaking and optimization of the process parameters[J]. International Journal of Rock Mechanics and Mining Sciences,2022,160:105251. DOI: 10.1016/j.ijrmms.2022.105251

    [29] 李美艳,韩彬,张世一,等. 不同介质条件下激光照射岩石实验研究[J]. 应用激光,2017,37(5):709−714.

    LI Meiyan,HAN Bin,ZHANG Shiyi,et al. Experimental study of laser irradiation of rocks under different media conditions[J]. Applied Laser,2017,37(5):709−714.

    [30]

    DENG Rong,LIU Jianping,KANG Minqiang,et al. Simulation and experimental research of laser scanning breaking granite[J]. Optics Communications,2022,502:127403. DOI: 10.1016/j.optcom.2021.127403

    [31]

    MAO Shuai,SHI Xiangchao,MENG Yingfeng,et al. Experimental investigation of rock drillability for three rock types under varying wellbore pressure conditions[J]. Rock Mechanics and Rock Engineering,2018,51(8):2439−2445. DOI: 10.1007/s00603-018-1472-7

    [32] 毛帅. 提高岩心可钻性评价实用性研究[D]. 成都: 西南石油大学, 2018.

    MAO Shuai. Improve the practicability study of the core drillability evaluation[D]. Chengdu: Southwest Petroleum University, 2018.

    [33] 王泽桂. 激光照射花岗岩温度演变及热裂特性研究[D]. 徐州: 中国矿业大学, 2022.

    WANG Zegui. Study on temperature evolution and thermal cracking characteristics of granite irradiated by fiber laser[D]. Xuzhou: China University of Mining and Technology, 2022.

    [34]

    CHEN Ke,HUANG Zhiqiang,DENG Rong,et al. Research on the temperature and stress fields of elliptical laser irradiated sandstone,and drilling with the elliptical laser–assisted mechanical bit[J]. Journal of Petroleum Science and Engineering,2022,211:110147. DOI: 10.1016/j.petrol.2022.110147

    [35] 冯上鑫,王善勇. 旋切作用下岩石破碎机理及岩石可钻性的试验研究[J]. 煤炭学报,2022,47(3):1395−1404. DOI: 10.13225/j.cnki.jccs.xr21.1459

    FENG Shangxin,WANG Shanyong. Experimental study of rock–bit interaction mechanism for rock drillability assessment in rotary drilling[J]. Journal of China Coal Society,2022,47(3):1395−1404. DOI: 10.13225/j.cnki.jccs.xr21.1459

    [36] 朱传庆,陈驰,杨亚波,等. 岩石热导率影响因素实验研究及其对地热资源评估的启示[J]. 石油科学通报,2022,7(3):321−333. DOI: 10.3969/j.issn.2096-1693.2022.03.029

    ZHU Chuanqing,CHEN Chi,YANG Yabo,et al. Experimental study into the factors influencing rock thermal conductivity and their significance to geothermal resource assessment[J]. Petroleum Science Bulletin,2022,7(3):321−333. DOI: 10.3969/j.issn.2096-1693.2022.03.029

  • 期刊类型引用(2)

    1. 吴波,刘林,郁东旭,王建州,王义江. 激光照射花岗岩抗拉强度及孔隙分布研究. 建井技术. 2024(04): 88-94+74 . 百度学术
    2. 杨豫龙,曹卫华,甘超,黎育朋,吴敏. 深部地质钻进过程地层特征参数建模与安全预警研究进展. 煤田地质与勘探. 2024(10): 195-206 . 本站查看

    其他类型引用(1)

图(12)  /  表(3)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  9
  • PDF下载量:  20
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-07-23
  • 录用日期:  2023-08-24
  • 网络出版日期:  2023-08-08
  • 刊出日期:  2023-08-14

目录

    /

    返回文章
    返回