基于等价输入干扰方法的钻孔机器人给进力跟踪控制

李旺年, 陆承达, 张幼振, 宋海涛, 田盛楠, 黄恒宇, 陈略峰, 吴敏

李旺年,陆承达,张幼振,等. 基于等价输入干扰方法的钻孔机器人给进力跟踪控制[J]. 煤田地质与勘探,2023,51(9):171−179. DOI: 10.12363/issn.1001-1986.23.06.0337
引用本文: 李旺年,陆承达,张幼振,等. 基于等价输入干扰方法的钻孔机器人给进力跟踪控制[J]. 煤田地质与勘探,2023,51(9):171−179. DOI: 10.12363/issn.1001-1986.23.06.0337
LI Wangnian,LU Chengda,ZHANG Youzhen,et al. Tracking control of drilling robot feed force based on an equivalent-input-disturbance[J]. Coal Geology & Exploration,2023,51(9):171−179. DOI: 10.12363/issn.1001-1986.23.06.0337
Citation: LI Wangnian,LU Chengda,ZHANG Youzhen,et al. Tracking control of drilling robot feed force based on an equivalent-input-disturbance[J]. Coal Geology & Exploration,2023,51(9):171−179. DOI: 10.12363/issn.1001-1986.23.06.0337

 

基于等价输入干扰方法的钻孔机器人给进力跟踪控制

基金项目: 国家自然科学基金项目(62273317);教育部高等学校学科创新引智计划项目(B17040);中煤科工集团西安研究院有限公司科技创新基金项目(2020XAYDC01-03,2023XAYKF05)
详细信息
    作者简介:

    李旺年,1987年生,男,陕西吴堡人,博士研究生,副研究员,从事钻探技术与装备的研究与推广工作. E-mail:liwangnian@cctegxian.com

    通讯作者:

    陆承达,1991年生,男,湖北咸宁人,博士,副教授,从事时滞系统控制、鲁棒控制、过程控制、智能系统等方面研究.E-mail:luchengda@cug.edu.cn

  • 中图分类号: TD41;TP242

Tracking control of drilling robot feed force based on an equivalent-input-disturbance

  • 摘要:

    煤矿井下施工瓦斯抽采孔作业过程中,钻孔机器人给进系统用于钻进过程加压、减压和给进。针对复杂地层不确定性扰动影响钻孔机器人工作性能和钻孔施工质量及效率的问题,首先分析钻孔机器人的结构组成和钻进施工工艺,根据其给进系统的工作原理,建立了减压阀控制数学模型,获得了控制输入量电磁铁电流与控制输出量减压阀出口压力的映射关系,并在明确给进力驱动方式的基础上对整个给进系统进行控制建模。随后设计了钻孔机器人给进力跟踪控制系统,使用Luenburger全维状态观测器重构被控对象状态,建立基于等价输入干扰估计(EID)与补偿的控制结构,设计了状态反馈控制器、状态观测器和干扰估计器增益矩阵,实现给进力闭环控制系统稳定的同时具有满意的跟踪与扰动抑制性能。最后利用Matlab软件搭建数值仿真模型,以某煤矿井下实际钻进施工时给进系统的实测钻进数据信号为例进行仿真研究,以给进力为控制目标,实测减压阀输出压力波动为依据设计外部扰动信号,分别采用所提EID控制方法和PID控制方法进行了对比仿真。结果表明:所提方法获得了比PID方法更小的稳态跟踪误差峰峰值,且跟踪误差更小,保证了给进系统稳定运行,具有较好的跟踪与扰动抑制性能。研究结果对提高钻孔机器人适应复杂煤层负载变化,保证其工作性能和安全高效施工提供了控制理论基础。

    Abstract:

    During the underground construction of gas extraction hole in coal mine, the feeding system of drilling robot is used for pressurization, decompression and feeding in drilling process. In view of the problem that the uncertain disturbance of complex strata affects the working performance of drilling robot and the quality and efficiency of drilling construction, the structural composition and drilling construction technology of drilling robot were analyzed at first. The mathematical model of pressure reducing valve control was established according to the working principle of its feed system, and the mapping relationship between the control input, the electromagnet current, and the control output, the outlet pressure of pressure reducing valve, was obtained. Then, control modeling was conducted for the whole feed system on the basis of defining the driving mode of feed force. Secondly, the feed force tracking control system of the drilling robot was designed. Meanwhile, the Luenburger full-state observer was used to reconstruct the state of the controlled object, and the control structure based on equivalent-input-disturbance (EID) estimation and compensation was established. Besides, the gain matrix was designed for the state feedback controller, state observer and disturbance estimator, to realize the stability of the feed force closed-loop control system with satisfactory tracking and disturbance suppression performance. Finally, the numerical simulation model was built using the Matlab software. Specifically, the simulation research was carried out with the measured drilling data signal of the feed system in the actual drilling construction of a coal mine. In addition, the external disturbance signal was designed with the feed force as the control target and the measured pressure fluctuation of the pressure reducing valve as the basis. Further, comparative simulation was conducted with the proposed EID control method and PID control method respectively. The results show that the proposed method has a smaller peak-to-peak value of the steady-state tracking error than the PID method, as well as a smaller tracking error, which ensures the stable operation of the feed system and has better tracking and disturbance suppression performance. Generally, the research results of this paper provide a control theoretical basis for improving the adaptability of drilling robots to complex coal seam load changes, and ensuring their working performance and safe and efficient construction.

  • 图  1   钻孔机器人施工瓦斯抽采孔

    Fig.  1   Gas extraction hole construction with drilling robot

    图  2   减压阀物理结构

    Fig.  2   Physical structure of pressure reducing valve

    图  3   减压阀电流控制传递函数方框图

    Fig.  3   Transfer function for current control of pressure reducing valve

    图  4   钻孔机器人给进力跟踪控制系统

    Fig.  4   Force tracking control system of drilling robot

    图  5   减压阀阀门出口压力现场数据拟合曲线

    Fig.  5   Field data fitting curve for outlet pressure of pressure reducing valve

    图  6   钻孔机器人给进系统给进力跟踪控制结果

    Fig.  6   Force tracking control results of drilling robot feed system

    图  7   钻孔机器人给进系统跟踪误差与扰动抑制误差

    Fig.  7   Tracking error and disturbance suppression error of drilling robot feed system

    图  8   与PID控制方法的给进系统给进力跟踪控制对比结果

    Fig.  8   Comparison results of Force tracking control of feed system with PID control method

    图  9   与PID控制方法的给进系统跟踪误差对比结果

    Fig.  9   Comparison results of tracking error of the feed system with PID control method

    表  1   减压阀模型仿真参数

    Table  1   Simulation parameter of pressure reducing valve model

    参数数值参数数值
    阀芯质量
    $m/{\rm{kg}}$
    0. 5阀芯流量
    系数${C_{\rm{d}}}$
    0.62
    油液密度
    $\rho /({\rm{kg}} \cdot {{\rm{m}}^{ - 3} })$
    900阀芯通径
    $D$/m
    $6 \times {10^{ - 3}}$
    阀芯黏性摩擦
    系数$b/({\rm{N\cdot s} } \cdot { {\rm{m} }^{ - 1} })$
    0.5弹簧刚度
    $k/({\rm{N} } \cdot {\rm{m} }^{-1})$
    2500
    油液体积弹性模量
    $E/({\rm{N}} \cdot {{\rm{m}}^{ - 2} })$
    $1.4 \times {10^9}$减压阀出口受控
    腔初始容积$V/{{\rm{cm}}^3}$
    20
    下载: 导出CSV

    表  2   EID与PID控制方法的误差数据对比

    Table  2   Comparison of error data of EID and PID control methods kN

    方法EISEITAERMS
    PID17643041243104.9420
    EID0.450 619.142 50.167 7
      注:EISEITAERMS分别为平方误差、绝对误差、均方根误差。
    下载: 导出CSV
  • [1] 王浩. 防冲钻孔机器人钻具姿态监测方法研究[D]. 徐州: 中国矿业大学, 2022.

    WANG Hao. Research on the posture monitoring method of drilling tool in drilling robot for rockburst prevention[D]. Xuzhou: China University of Mining and Technology, 2022.

    [2] 李生朋,陶彪,刘陈,等. 隧道钻孔机器人及其运动学分析[J]. 工程机械,2021,52(7):40−45. DOI: 10.3969/j.issn.1000-1212.2021.07.010

    LI Shengpeng,TAO Biao,LIU Chen,et al. Tunnel drilling robot and its kinematics analysis[J]. Construction Machinery and Equipment,2021,52(7):40−45. DOI: 10.3969/j.issn.1000-1212.2021.07.010

    [3] 杨扬,陈柏,王尧尧. 建筑钻孔机器人的振动与控制研究[J]. 机电工程,2019,36(6):596−601. DOI: 10.3969/j.issn.1001-4551.2019.06.008

    YANG Yang,CHEN Bai,WANG Yaoyao. Vibration and control of building drilling robot[J]. Journal of Mechanical & Electrical Engineering,2019,36(6):596−601. DOI: 10.3969/j.issn.1001-4551.2019.06.008

    [4] 李旺年,张幼振,田宏亮,等. 基于煤岩可钻性的钻孔机器人自适应控制方法[J]. 工矿自动化,2023,49(6):182−188. DOI: 10.13272/j.issn.1671-251x.2022110047

    LI Wangnian,ZHANG Youzhen,TIAN Hongliang,et al. Adaptive control method for drilling robot based on coal and rock drillability[J]. Journal of Mine Automation,2023,49(6):182−188. DOI: 10.13272/j.issn.1671-251x.2022110047

    [5] 姚宁平,王毅,姚亚峰,等. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 煤田地质与勘探,2020,48(2):1−7. DOI: 10.3969/j.issn.1001-1986.2020.02.001

    YAO Ningping,WANG Yi,YAO Yafeng,et al. Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China[J]. Coal Geology & Exploration,2020,48(2):1−7. DOI: 10.3969/j.issn.1001-1986.2020.02.001

    [6] 李泉新,刘飞,方俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.

    LI Quanxin,LIU Fei,FANG Jun,et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration,2021,49(6):265−272.

    [7] 杨林. 煤矿井下瓦斯抽采钻孔机器人研究现状及关键技术[J]. 煤矿机械,2018,39(8):60−62. DOI: 10.13436/j.mkjx.201808022

    YANG Lin. Research status and key technology of underground gas drainage drilling robot in coal mine[J]. Coal Mine Machinery,2018,39(8):60−62. DOI: 10.13436/j.mkjx.201808022

    [8] 吴榕,唐雯,林文祥. 减压阀动态性能仿真分析与测试[J]. 厦门大学学报(自然科学版),2011,50(5):847−851.

    WU Rong,TANG Wen,LIN Wenxiang. Dynamic performance simulation of pressure relief valve and test[J]. Journal of Xiamen University (Natural Science),2011,50(5):847−851.

    [9] 张怀亮,袁坚,邹伟. 基础振动下直动式减压阀动态特性分析[J]. 工程设计学报,2013,20(4):298−302. DOI: 10.3785/j.issn.1006-754X.2013.04.007

    ZHANG Huailiang,YUAN Jian,ZOU Wei. The dynamic characteristics analysis of direct operated pressure reducing valve on fundamental vibration[J]. Chinese Journal of Engineering Design,2013,20(4):298−302. DOI: 10.3785/j.issn.1006-754X.2013.04.007

    [10] 强彦,冯整顺,孙辉,等. 直动式比例减压阀功率放大器对其控制品质的影响[J]. 液压与气动,2022,46(11):34−41. DOI: 10.11832/j.issn.1000-4858.2022.11.005

    QIANG Yan,FENG Zhengshun,SUN Hui,et al. Influence of direct acting proportional pressure reducing valve power amplifier on its control quality[J]. Chinese Hydraulics & Pneumatics,2022,46(11):34−41. DOI: 10.11832/j.issn.1000-4858.2022.11.005

    [11] 杨华勇,王双,张斌,等. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版),2016,46(5):1494−1505. DOI: 10.13229/j.cnki.jdxbgxb201605017

    YANG Huayong,WANG Shuang,ZHANG Bin,et al. Development and prospect of digital hydraulic valve and valve control system[J]. Journal of Jilin University (Engineering and Technology Edition),2016,46(5):1494−1505. DOI: 10.13229/j.cnki.jdxbgxb201605017

    [12] 卢文辉,李胜,吕敏健. 电液比例阀的结构原理与研究现状[J]. 机床与液压,2014,42(5):166−172. DOI: 10.3969/j.issn.1001-3881.2014.05.045

    LU Wenhui,LI Sheng,LYU Minjian. Fundamental working principles of electro–hydraulic proportional valves and review on their development[J]. Machine Tool & Hydraulics,2014,42(5):166−172. DOI: 10.3969/j.issn.1001-3881.2014.05.045

    [13]

    GUO Yinan,CHENG Wei,GONG Dunwei,et al. Adaptively robust rotary speed control of an anchor–hole driller under varied surrounding rock environments[J]. Control Engineering Practice,2019,86(5):24−36.

    [14] 赵超泽. 潜孔钻机推进与回转系统的仿真分析与研究[D]. 秦皇岛: 燕山大学, 2016.

    ZHAO Chaoze. The analysis and simulation of DTH drill propulsion and rotary system[D]. Qinhuangdao: Yanshan University, 2016.

    [15] 王东升,林宏武,赵宏强,等. 凿岩回转推进全液压自适应控制系统[J]. 液压与气动,2015(8):51−54. DOI: 10.11832/j.issn.1000-4858.2015.08.011

    WANG Dongsheng,LIN Hongwu,ZHAO Hongqiang,et al. Total hydraulic auto adjusting system for rock drilling’s rotation and feed[J]. Chinese Hydraulics & Pneumatics,2015(8):51−54. DOI: 10.11832/j.issn.1000-4858.2015.08.011

    [16]

    KHALEEL A K A,ADNAN M S,ALHAMD S J. Estimation of Bourgoyne and Young model coefficients to predict optimum drilling rates and bit weights using genetic algorithms:A case study of the Faihaa oil field in Iraq[J]. IOP Conference Series:Materials Science and Engineering,2021,1067(1):012154. DOI: 10.1088/1757-899X/1067/1/012154

    [17]

    SHE Jinhua,MIYAMOTO K,HAN Qinglong. Generalized–extended–state–observer and equivalent–input–disturbance methods for active disturbance rejection:Deep observation and comparison[J]. IEEE/CAA Journal of Automatica Sinica,2023,10(4):957−968. DOI: 10.1109/JAS.2022.105929

    [18] 鲁力群,王秀景,范钰涓,等. M4系列电液比例多路阀特性研究[J]. 机床与液压,2015,43(11):165−168. DOI: 10.3969/j.issn.1001-3881.2015.11.044

    LU Liqun,WANG Xiujing,FAN Yujuan,et al. Characteristics research of electro−hydraulic proportional multi−way valve M4[J]. Machine Tool & Hydraulics,2015,43(11):165−168. DOI: 10.3969/j.issn.1001-3881.2015.11.044

    [19] 姚亚峰. 全液压动力头式钻机给进系统的分析研究[D]. 西安: 西安科技大学, 2005.

    YAO Yafeng. Analysis study on feeding system of all–hydraulic power head type drill rig[D]. Xi’an: Xi’an University of Science and Technology, 2005.

    [20]

    SHE Jinhua,FANG Mingxing,OHYAMA Y,et al. Improving disturbance rejection performance based on an equivalent input disturbance approach[J]. IEEE Transactions on Industrial Electronics,2008,55(1):380−389. DOI: 10.1109/TIE.2007.905976

    [21]

    YU Pan,LIU Kangzhi,SHE Jinhua,et al. Robust disturbance rejection for repetitive control systems with time–varying nonlinearities[J]. International Journal of Robust and Nonlinear Control,2019,29(5):1597−1612. DOI: 10.1002/rnc.4452

    [22]

    TIAN Shengnan,LIU Kangzhi,ZHANG Manli,et al. Disturbance rejection of T–S fuzzy systems:A membership function–dependent EID method[J]. International Journal of Systems Science,2023,54(3):618−632. DOI: 10.1080/00207721.2022.2135975

    [23]

    QIN A K,HUANG V L,SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation,2009,13(2):398−417. DOI: 10.1109/TEVC.2008.927706

图(9)  /  表(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  5
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-10
  • 修回日期:  2023-07-27
  • 网络出版日期:  2023-09-10
  • 刊出日期:  2023-09-14

目录

    /

    返回文章
    返回