定向钻进连续取心钻具姿态监测系统设计

林婷婷, 刘泽楷, 马银龙, 朱金宝

林婷婷,刘泽楷,马银龙,等. 定向钻进连续取心钻具姿态监测系统设计[J]. 煤田地质与勘探,2023,51(9):138−146. DOI: 10.12363/issn.1001-1986.23.06.0314
引用本文: 林婷婷,刘泽楷,马银龙,等. 定向钻进连续取心钻具姿态监测系统设计[J]. 煤田地质与勘探,2023,51(9):138−146. DOI: 10.12363/issn.1001-1986.23.06.0314
LIN Tingting,LIU Zekai,MA Yinlong,et al. Design of attitude monitoring system for directional drilling continuous coring tools[J]. Coal Geology & Exploration,2023,51(9):138−146. DOI: 10.12363/issn.1001-1986.23.06.0314
Citation: LIN Tingting,LIU Zekai,MA Yinlong,et al. Design of attitude monitoring system for directional drilling continuous coring tools[J]. Coal Geology & Exploration,2023,51(9):138−146. DOI: 10.12363/issn.1001-1986.23.06.0314

 

定向钻进连续取心钻具姿态监测系统设计

基金项目: 科技部重点研发项目(2021YFC2900200);国家自然科学基金区域联合基金重点项目(U21A2020)
详细信息
    作者简介:

    林婷婷,1983年生,女,吉林长春人,博士,教授,从事地球物理探测方法及装备研究. E-mail:ttlin@jlu.edu.cn

    通讯作者:

    朱金宝,1992年生,男,吉林延边人,博士,鼎新学者博士后,从事磁共振测井技术及仪器研究. E-mail:zhujb@jlu.edu.cn

  • 中图分类号: P634.7

Design of attitude monitoring system for directional drilling continuous coring tools

  • 摘要:

    定向钻进连续取心作为一项新兴的地质勘探技术,在矿产资源勘探方面有广阔前景,为研发具有自主知识产权的定向连续取心钻具,设计了基于姿态传感和无线通信技术的姿态监测系统。硬件系统设计方面,选用MPU9250姿态传感器和STM32F103C8T6主控芯片监测钻具姿态的变化,通过LoRa无线模块实现穿透地层的通信,同时为适应钻具的结构和随钻测量的要求,自主设计了小型化的系统电路,其长宽高尺寸分别为70 mm×25 mm×7 mm。软件设计方面,通过互补滤波和卡尔曼滤波对MPU9250获取的数据进行处理,建立了钻具姿态解算误差补偿模型,设计上位机实现钻具姿态的实时展示。最后,通过强电磁干扰环境的模拟测试对硬件和软件的可靠性与准确性进行了验证。结果表明,设计的系统有效地抑制了惯性传感组件的漂移、累积误差以及噪声,能够持续、稳定地对钻具姿态进行实时监测,为实现定向钻进连续取心钻具的姿态监测提供了一种新思路。

    Abstract:

    Directional drilling continuous coring, as an emerging geological exploration technique, holds vast potential in the field of mineral resource exploration. To facilitate the development of directional continuous coring tools with proprietary intellectual property rights, an attitude monitoring system based on attitude sensing and wireless communication technology was designed in this paper. Concerning the hardware system design, the MPU9250 attitude sensor and STM32F103C8T6 main control chip were adopted to monitor the attitude change of drilling tools, where the communication through geological layers was achieved using a LoRa wireless module. Additionally, to accommodate the structural of the drilling tool and the requirements of measurement while drilling, a downsized system circuit was autonomously designed, which is sized 70 mm × 25 mm × 7 mm (L × W × H). In terms of software design, data collected by MPU9250 was processed by complementary filtering and Kalman filtering. Besides, an error compensation model for solution of drilling tool attitude was established, and an upper computer was designed to exhibit the real-time attitude of a drilling tool. Ultimately, the reliability and accuracy of both hardware and software were verified through simulation tests under the environment with strong electromagnetic interference. The outcomes reveal that the designed system effectively mitigates the drift, cumulative errors, and noise in the inertial sensing components, capable of achieving the continuous and stable real-time attitude monitoring of drilling tool, thereby offering a novel approach towards achieving the attitude monitoring in directional drilling continuous coring tools.

  • 图  1   钻具姿态监测系统

    Fig.  1   Block diagram of attitude monitoring system for drilling tool

    图  2   STM32F103C8T6芯片连接

    Fig.  2   Schematic diagram of STM32F103C8T6 chip

    图  3   MPU9250及其外围电路

    Fig.  3   MPU9250 and its peripheral circuit

    图  4   LoRa模块连接

    Fig.  4   Schematic diagram of LoRa module

    图  5   TPS61025DRCR电源芯片模块及外围电路

    Fig.  5   TPS61025DRCR power supply chip module and peripheral circuit

    图  6   系统电路实物

    Fig.  6   Physical diagram of system circuit

    图  7   软件流程

    Fig.  7   Software flowchart

    图  8   钻具坐标系、地理坐标系

    Fig.  8   Schematic diagram of drill tool coordinate system and geographic coordinate system

    图  9   互补滤波

    Fig.  9   Schematic diagram of complementary filtering

    图  10   陀螺仪积分误差与校准

    Fig.  10   Gyroscope integration error and calibration

    图  11   卡尔曼滤波实测

    Fig.  11   Kalman filtering measurement

    图  12   长春市地质宫博物馆位置

    Fig.  12   Location of Changchun Geological Palace Museum

    图  13   测试实验模型及测试结果

    Fig.  13   Experimental models and test results

    表  1   姿态解算方法对照

    Table  1   Comparison of attitude estimation methods

    姿态解算方法优势局限实际应用情况
    欧拉角计算简单,易交互特定情况损失自由度水平姿态角变化小
    方向余弦可全姿态运行计算量大,实时性差应用较少
    四元数参数少,易操作形式复杂不直观应用广泛
    下载: 导出CSV

    表  2   陀螺仪和加速度计的零点漂移

    Table  2   Zero drift of gyroscope and accelerometer

    数据序号Dx/LSBEx/LSB
    111.8458
    27.6459
    38.8458
    410.3458
    57.5458
    65.1459
    74.8459
    86.7458
    97.2459
    109.9459
    平均值7.97458.5
    下载: 导出CSV
  • [1] 田郁溟,琚宜太,周尚国. 我国战略矿产资源安全保障若干问题的思考[J]. 地质与勘探,2022,58(1):217−228.

    TIAN Yuming,JU Yitai,ZHOU Shangguo. Thinking on several problems of China’s strategic mineral resources security guarantee[J]. Geology and Exploration,2022,58(1):217−228.

    [2] 王佟,韩效忠,邓军,等. 论中国煤炭地质勘查工作在新条件下的定位与重大研究问题[J]. 煤田地质与勘探,2023,51(2):27−44.

    WANG Tong,HAN Xiaozhong,DENG Jun,et al. Orientation and major research problems of coal geological exploration in China under new conditions[J]. Coal Geology & Exploration,2023,51(2):27−44.

    [3] 中华人民共和国自然资源部. 中国矿产资源报告[M]. 北京: 地质出版社, 2022.
    [4] 薛倩冰,张金昌. 智能化自动化钻探技术与装备发展概述[J]. 探矿工程 (岩土钻掘工程),2020,47(4):9−14.

    XUE Qianbing,ZHANG Jinchang. Advances in intelligent automatic drilling technologies and equipment[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2020,47(4):9−14.

    [5] 李小洋, 马银龙, 韩泽龙, 等. 一种涡轮式定向取心钻进装置: CN115217429A[P]. 2022-10-21.
    [6] 郭先敏,成冠琪,蔡西茂,等. 全姿态随钻陀螺测斜技术[J]. 石油机械,2016,44(6):1−6.

    GUO Xianmin,CHENG Guanqi,CAI Ximao,et al. All–attitude gyro while drilling technology[J]. China Petroleum Machinery,2016,44(6):1−6.

    [7] 王立兵,杨松普,罗巍,等. 足部安装 MEMS–IMU 个人导航系统[J]. 中国惯性技术学报,2016,24(4):460−463.

    WANG Libing,YANG Songpu,LUO Wei,et al. Pedestrian navigation algorithm based on MEMS–IMU[J]. Journal of Chinese Inertial Technology,2016,24(4):460−463.

    [8]

    CHEN Weicao,GAO Guowei,WANG Juan,et al. The study of the MEMS gyro zero drift signal based on the adaptive Kalman filter[J]. Key Engineering Materials,2012,500:635−639. DOI: 10.4028/www.scientific.net/KEM.500.635

    [9] 胡茂晓. 惯性动作捕捉前端设备与数据传输研究[D]. 济南: 山东大学, 2015.

    HU Maoxiao. Research on front–end equipment and data transmission of inertial motion capture device[D]. Ji’nan: Shandong University, 2015.

    [10] 蒋硕硕. 传感器技术的发展现状与应用前景探讨[J]. 电子技术与软件工程,2013(9):23.

    JIANG Shuoshuo. Discussion on the current development status and prospects of sensor technology[J]. Electronic Technology & Software Engineering,2013(9):23.

    [11] 秦永元. 惯性导航[M]. 北京: 科学出版社, 2006.
    [12]

    FENG Kaiqiang,LI Jie,ZHANG Xiaoming,et al. A new quaternion–based Kalman filter for real–time attitude estimation using the two–step geometrically–intuitive correction algorithm[J]. Sensors,2017,17(9):2146. DOI: 10.3390/s17092146

    [13] 李文亮. 四元数矩阵[M]. 长沙: 国防科技大学出版社, 2002.
    [14] 乔会敏,张嘉易,郝永平,等. 一种微机械陀螺仪误差的高精度补偿方法[J]. 国外电子测量技术,2012,31(8):18−20.

    QIAO Huimin,ZHANG Jiayi,HAO Yongping,et al. A high precision compensation method for micro–mechanical gyro error[J]. Foreign Electronic Measurement Technology,2012,31(8):18−20.

    [15]

    KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Fluids Engineering,1960,82(1):35−45.

    [16] 黄镇,张浩磊,刘梅,等. 一种二阶互补滤波与卡尔曼滤波的姿态解算方法设计[J]. 电子工艺技术,2018,39(3):168−170.

    HUANG Zhen,ZHANG Haolei,LIU Mei,et al. Design of second–order complementary filter and Kalman filter for attitude calculation[J]. Electronics Process Technology,2018,39(3):168−170.

    [17]

    MASRAFEE M M R, FARDIN N, AHMED A, et al. Design of Inertial Measurement Unit in Attitude and Heading Reference System for Real-Time Maneuver Monitoring by Using Kalman Filter[C]//2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE, 2021: 1−5.

    [18]

    SOLA J. Quaternion kinematics for the error–state Kalman filter[J]. arXiv preprint arXi: 1711. 02508, 2017.

    [19]

    DE RUITER A,DAMAREN C. Extended Kalman filtering and nonlinear predictive filtering for spacecraft attitude determination[J]. Canadian Aeronautics and Space Journal,2002,48(1):13−23. DOI: 10.5589/q02-015

    [20]

    HENDERSON D M. Euler angles, quaternions, and transformation matrices for space shuttle analysis[R]. (1977-06-09) [2013-09-03].

    [21]

    OWCZAREK P, GOSLINSKI J. An estimation of central points of circle markers in a vision system by using Kalman filter and complementary filter[C]. 20th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2015: 940–945.

  • 期刊类型引用(17)

    1. 王淑璇,王强民,曹煜,王浩. 榆横矿区典型矿井含水层水力联系辨识. 能源与环保. 2025(02): 101-105+111 . 百度学术
    2. 马国逢,刘洋,杨建,王强民. 蒙陕深埋煤层首采工作面顶板富水性和涌水量差异研究. 煤炭工程. 2024(02): 87-91 . 百度学术
    3. 丁莹莹,尹尚先,连会青,卜昌森,刘伟,夏向学,周旺. 基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究. 中国安全生产科学技术. 2024(03): 110-117 . 百度学术
    4. 任海帆. 鄂尔多斯盆地煤层气开发井壁稳定性技术研究. 中国高新科技. 2024(07): 123-125 . 百度学术
    5. 邓启锐,高建峰,刘飞,徐士哲,许珂,王杰,南忠辉. 基于不完整井非稳定运动的立井井筒涌水量预测研究. 煤炭工程. 2024(08): 172-176 . 百度学术
    6. 付德渊,樊江伟,乌阳嘎,黄海鱼,白志君,李哲. 基于AHP的东胜煤田煤层顶板充水强度分区评价. 陕西煤炭. 2024(09): 58-63+99 . 百度学术
    7. 周振方,董书宁,董阳,罗生虎,薛建坤,王治宙,王淑璇,尚宏波,王甜甜,王昱同,王同. 蒙陕接壤区典型煤层开采顶板周期性变形破坏及涌水响应特征. 煤田地质与勘探. 2024(08): 101-110 . 本站查看
    8. 贾继平,李赵岩,李涛,田超超. 黄陵一号煤矿814工作面采前防治水安全评价. 陕西煤炭. 2024(10): 91-95 . 百度学术
    9. 陈云民,李媛,苏士杰,吴永辉,周新河. 基于小波变换的煤矿区地下水位动态变化特征分析. 煤炭工程. 2024(S1): 153-162 . 百度学术
    10. 杨建,王皓,王强民,张溪彧,王甜甜. 蒙陕接壤区矿井水中典型污染组分特征及来源. 煤炭学报. 2023(04): 1687-1696 . 百度学术
    11. 王林威,靖娟,尚文绣. 矿井大量涌水地区多水源联合配置. 水资源与水工程学报. 2023(03): 37-45+54 . 百度学术
    12. 刘慧,刘桂芹,宁殿艳,樊娟,陈卫明. 基于VMD-DBN的矿井涌水量预测方法. 煤田地质与勘探. 2023(06): 13-21 . 本站查看
    13. 孙刚友,胡清珍,康钦容,夏缘帝,袁威,张卫中. 基于大井法和地下水模型系统数值模拟方法的某矿坑涌水量预测对比分析. 科学技术与工程. 2023(21): 9024-9031 . 百度学术
    14. 王皓,周振方,杨建,赵春虎,曹煜,冯龙飞,尚宏波,王甜甜,王昱同,薛建坤. 蒙陕接壤区典型煤层开采地下水系统扰动的定量表征. 煤炭科学技术. 2023(07): 83-93 . 百度学术
    15. 康占忠,刘洋. 榆神矿区水文地球化学特征精细分层研究. 煤炭技术. 2022(08): 72-75 . 百度学术
    16. 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律. 煤田地质与勘探. 2022(12): 152-158 . 本站查看
    17. 周新河,翁明月,苏士杰,李广疆. 近距离煤层顶板水害立体防控技术研究——以蒙陕深部矿井为例. 煤炭科学技术. 2021(12): 165-172 . 百度学术

    其他类型引用(3)

图(13)  /  表(2)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  5
  • PDF下载量:  33
  • 被引次数: 20
出版历程
  • 收稿日期:  2023-06-11
  • 修回日期:  2023-08-22
  • 网络出版日期:  2023-09-10
  • 刊出日期:  2023-09-14

目录

    /

    返回文章
    返回