Principle and technology of in-situ magnetically controlled multidirectional pressure-preserved coring in the coal mine
-
摘要:
获取煤岩体原位物理力学参数是煤炭资源开发的首要任务,瓦斯原位参数精准测量是实现煤矿安全开采的基本保障。针对煤矿原位瓦斯参数测不准的技术难题,结合煤矿井下取心的技术特点,创新提出基于磁力控制的多向保压取心技术构想。基于复合磁场特性,自主设计了磁控自触发保压控制器,优化了取心触发及密封结构,关键保压构件实现磁控非接触式自触发及自密封,提升保压触发的容错率。自主研制了多向保压取心性能测试平台,基于该平台验证了保压控制器在不同取心角度的良好触发能力及自密封能力。集成磁控保压模块,形成多向保压取心装备,通过实验室测试验证了该装备可在多个方向实现保压取心,且保压能力可以达到6 MPa,满足煤矿保压取心条件。研究成果为深部煤矿多向保压取心提供了技术支持,为保压控制结构设计提供了全新思路。
Abstract:Obtaining the in-situ physical and mechanical parameters of coal-rock mass is the primary task for the development of deep coal resource. Accurate measurement of the in-situ parameters of gas is the basic guarantee to realize the safe mining of coal. In view of the technical challenges of inaccurate measurement of in-situ gas parameters in coal mine, the idea of multi-directional pressure-preserved coring technology based on magnetic force control was proposed with consideration to the technical characteristics of coring in underground coal mines. Specifically, a self-triggered magnetically controlled pressure-preserved controller was designed based on the characteristics of the composite magnetic field. The triggering and sealing structure for coring was optimized. The key pressure-preserved components realized the non-contact self-triggering and self-sealing by magnetic force control, thus improving the fault tolerance of the pressure-preserved trigger. Besides, a test platform functioning for multi-directional pressure-preserved coring was developed independently. With the self-developed test platform, it was verified that the pressure-preserved controller had a good triggering and self-sealing ability at different coring angles. In addition, a magnetically controlled pressure-preserved module was integrated to form a multidirectional pressure-preserved coring device. Moreover, laboratory tests were conducted to verify that the device could realize the pressure-preserved coring in multiple directions, and the pressure-preserved capacity could reach 6 MPa, which meets the condition of pressure-preserved coring in coal mines. The research results provide technical support for the multidirectional pressure-preserved coring in deep coal mines and provide a new idea for the design of pressure-preserved control structure.
-
-
-
[1] 谢和平,鞠杨,高明忠,等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报,2018,43(5):1210−1219. XIE Heping,JU Yang,GAO Mingzhong,et al. Theories and technologies for in−situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society,2018,43(5):1210−1219.
[2] 高明忠,刘军军,林文明,等. 特厚煤层超前采动原位应力演化规律研究[J]. 煤炭科学技术,2020,48(2):28−35. GAO Mingzhong,LIU Junjun,LIN Wenming,et al. Study on in–situ stress evolution law of ultra–thick coal seam in advance mining[J]. Coal Science and Technology,2020,48(2):28−35.
[3] 赵明珍. 河南省主要煤田煤炭资源清洁利用潜势[J]. 煤田地质与勘探,2020,48(2):57−63. DOI: 10.3969/j.issn.1001-1986.2020.02.010 ZHAO Mingzhen. The potential of clean utilization of coal resources in main coalfields of Henan Province[J]. Coal Geology & Exploration,2020,48(2):57−63. DOI: 10.3969/j.issn.1001-1986.2020.02.010
[4] 赵平,谭克龙,韩效忠,等. 新形势下我国能源与生态安全保障研究[J]. 中国煤炭地质,2021,33(1):1−7. ZHAO Ping,TAN Kelong,HAN Xiaozhong,et al. Research for energy and ecological security in China under new situation[J]. Coal Geology of China,2021,33(1):1−7.
[5] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305. XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
[6] 谢和平,王金华,王国法,等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报,2018,43(5):1187−1197. XIE Heping,WANG Jinhua,WANG Guofa,et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society,2018,43(5):1187−1197.
[7] 谢和平,张茹,邓建辉,等. 基于“深地–地表”联动的深地科学与地灾防控技术体系初探[J]. 工程科学与技术,2021,53(4):1−12. XIE Heping,ZHANG Ru,DENG Jianhui,et al. A preliminary study on the technical system of deep earth science and geo disaster prevention–control based on the“deep earth–surface”linkage strategy[J]. Advanced Engineering Sciences,2021,53(4):1−12.
[8] 谢和平,李存宝,高明忠,等. 深部原位岩石力学构想与初步探索[J]. 岩石力学与工程学报,2021,40(2):217−232. XIE Heping,LI Cunbao,GAO Mingzhong,et al. Conceptualization and preliminary research on deep in situ rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(2):217−232.
[9] 高明忠,王明耀,谢晶,等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报,2020,45(8):2691−2703. GAO Mingzhong,WANG Mingyao,XIE Jing,et al. In–situ disturbed mechanical behavior of deep coal rock[J]. Journal of China Coal Society,2020,45(8):2691−2703.
[10] 姚宁平,王毅,姚亚峰,等. 我国煤矿井下复杂地质条件下钻探技术与装备进展[J]. 煤田地质与勘探,2020,48(2):1−7. YAO Ningping,WANG Yi,YAO Yafeng,et al. Progress of drilling technologies and equipments for complicated geological conditions in underground coal mines in China[J]. Coal Geology & Exploration,2020,48(2):1−7.
[11] 孙庆刚. 中国煤矿瓦斯灾害现状与防治对策研究[J]. 中国煤炭,2014,40(3):116−119. SUN Qinggang. Research on status quo and prevention countermeasures of coal mine gas disaster in China[J]. China Coal,2014,40(3):116−119.
[12] 胡千庭,邹银辉,文光才,等. 瓦斯含量法预测突出危险新技术[J]. 煤炭学报,2007,32(3):276−280. DOI: 10.3321/j.issn:0253-9993.2007.03.012 HU Qianting,ZOU Yinhui,WEN Guangcai,et al. New technology of outburst danger prediction by gas content[J]. Journal of China Coal Society,2007,32(3):276−280. DOI: 10.3321/j.issn:0253-9993.2007.03.012
[13] 邓楠. 煤层瓦斯含量直接测定取样技术研究进展[J]. 矿业安全与环保,2021,48(4):113−117. DENG Nan. Research status on direct measurement and sampling technology for coal seam gas content[J]. Mining Safety & Environmental Protection,2021,48(4):113−117.
[14] 马尚权,刘博雄,谢宏. 煤层瓦斯含量快速直接测定技术与装置研发[J]. 华北科技学院学报,2022,19(4):111−117. MA Shangquan,LIU Boxiong,XIE Hong. Development of technology and device for rapid and direct determination of coal seam gas content[J]. Journal of North China Institute of Science and Technology,2022,19(4):111−117.
[15] 魏培瑾. 基于煤层瓦斯含量直接测定方法的煤样尺度效应研究[J]. 能源与节能,2020(7):22−24. WEI Peijin. Research on the scale effect of coal sample based on the direct measurement method of coal seam gas content[J]. Energy and Energy Conservation,2020(7):22−24.
[16] 李成武,王义林,王其江,等. 直接法瓦斯含量测定结果准确性实验研究[J]. 煤炭学报,2020,45(1):189−196. LI Chengwu,WANG Yilin,WANG Qijiang,et al. Experimental study on accuracy of direct gas content determination[J]. Journal of China Coal Society,2020,45(1):189−196.
[17] 程波,乔伟,颜文学,等. 煤矿井下煤层瓦斯含量测定方法的研究进展[J]. 矿业安全与环保,2019,46(4):98−103. CHENG Bo,QIAO Wei,YAN Wenxue,et al. Research progress on determination method of coal seam gas content in coal mine[J]. Mining Safety & Environmental Protection,2019,46(4):98−103.
[18] 黄鹤. 煤层瓦斯含量测定方法优化及现场应用[J]. 现代矿业,2019,35(1):193−196. HUANG He. Optimization of coal seam gas content determination method and field application[J]. Modern Mining,2019,35(1):193−196.
[19] 俱养社,马峰良,华立. 钻孔瓦斯密闭保压取心器研制及应用[J]. 中国煤炭地质,2022,34(4):79−83. JU Yangshe,MA Fengliang,HUA Li. Development and application of borehole gas airtight pressurized corer[J]. Coal Geology of China,2022,34(4):79−83.
[20] 芦伟,龙威成,康锴,等. 中硬煤层井下长距离密闭取心瓦斯含量测定技术应用研究[J]. 煤炭技术,2021,40(12):153−156. LU Wei,LONG Weicheng,KANG Kai,et al. Application of gas content measurement technology for long–distance sealed coring in medium hard coal seam[J]. Coal Technology,2021,40(12):153−156.
[21] 景兴鹏. 机械密闭取芯瓦斯含量测定集成技术研究[J]. 中国安全生产科学技术,2015,11(11):59−63. JING Xingpeng. Study on integrate technique of mechanical sealed coring and methane content measuring[J]. Journal of Safety Science and Technology,2015,11(11):59−63.
[22] 贵宏伟,李学臣,郭艳飞,等. 千米钻机超深钻孔定点密闭取芯技术研究与应用[J]. 煤炭工程,2018,50(12):54−57. GUI Hongwei,LI Xuechen,GUO Yanfei,et al. Research and application of fixed−point closed sampling technology for super deep drilling in 1000 m drilling machine[J]. Coal Engineering,2018,50(12):54−57.
[23] 李小洋,张永勤,王汉宝,等. 煤层气调查评价钻探保压取心钻具设计与试制[J]. 地质与勘探,2019,55(4):1045−1050. LI Xiaoyang,ZHANG Yongqin,WANG Hanbao,et al. Design and trial–manufacture of the pressure−holding core drilling tool for evaluation of coal−seam gas[J]. Geology and Exploration,2019,55(4):1045−1050.
[24] 孙四清,张群,龙威成,等. 煤矿井下长钻孔煤层瓦斯含量精准测试技术及装置[J]. 煤田地质与勘探,2019,47(4):1−5. SUN Siqing,ZHANG Qun,LONG Weicheng,et al. Accurate test technology and device for coal seam gas content in long boreholes in underground coal mines[J]. Coal Geology & Exploration,2019,47(4):1−5.
[25] 龙威成. 井下煤层长距离定点密闭取心技术及应用研究[J]. 河南理工大学学报(自然科学版),2022,41(1):9−16. DOI: 10.16186/j.cnki.1673-9787.2021010044 LONG Weicheng. Research of long distance fixed–point sealed coring technology and application in underground coal seam[J]. Journal of Henan Polytechnic University (Natural Science),2022,41(1):9−16. DOI: 10.16186/j.cnki.1673-9787.2021010044
[26] 杨立文,苏洋,罗军,等. GW–CP194–80A型保压取心工具的研制[J]. 天然气工业,2020,40(4):91−96. YANG Liwen,SU Yang,LUO Jun,et al. Development and application of GW−CP194−80A pressure−maintaining coring tool[J]. Natural Gas Industry,2020,40(4):91−96.
[27] 朱庆忠,苏雪峰,杨立文,等. GW–CP194–80M型煤层气双保压取心工具研制及现场试验[J]. 特种油气藏,2020,27(5):139−144. ZHU Qingzhong,SU Xuefeng,YANG Liwen,et al. Development and field test of GW–CP194–80M CBM dual pressure coring tool[J]. Special Oil and Gas Reservoirs,2020,27(5):139−144.
[28] 王西贵,邹德永,杨立文,等. 煤层气保温保压保形取心工具研制及现场应用[J]. 石油钻探技术,2021,49(3):94−99. WANG Xigui,ZOU Deyong,YANG Liwen,et al. Development and field application of a coalbed methane coring tool with pressure maintenance,thermal insulation,and shape preservation capabilities[J]. Petroleum Drilling Techniques,2021,49(3):94−99.
[29] 卢宗玮,王清峰,李彦明. 密闭取心装置研究现状与解决方案[J]. 煤炭技术,2022,41(5):142−144. DOI: 10.13301/j.cnki.ct.2022.05.034 LU Zongwei,WANG Qingfeng,LI Yanming. Research and solution of closed sampling device[J]. Coal Technology,2022,41(5):142−144. DOI: 10.13301/j.cnki.ct.2022.05.034
[30] 高明忠,陈领,凡东,等. 深部煤矿原位保压保瓦斯取芯原理与技术探索[J]. 煤炭学报,2021,46(3):885−897. GAO Mingzhong,CHEN Ling,FAN Dong,et al. Principle and technology of coring with in–situ pressure and gas maintaining in deep coal mine[J]. Journal of China Coal Society,2021,46(3):885−897.
[31] 谢和平,高明忠,张茹,等. 深部岩石原位“五保”取芯构想与研究进展[J]. 岩石力学与工程学报,2020,39(5):865−876. XIE Heping,GAO Mingzhong,ZHANG Ru,et al. Study on concept and progress of in situ fidelity coring of deep rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(5):865−876.
[32] LI Cong,XIE Heping,GAO Mingzhong,et al. Novel designs of pressure controllers to enhance the upper pressure limit for gas–hydrate–bearing sediment sampling[J]. Energy,2021,227:120405. DOI: 10.1016/j.energy.2021.120405
[33] LIU Guikang,GAO Mingzhong,YANG Zhiwen,et al. The innovative design of deep in situ pressure retained coring based on magnetic field trigger controller[J]. Advances in Civil Engineering,2020,2020:8873628.
[34] 张三慧. 大学物理学: 电磁学[M]. 北京: 清华大学出版社, 2008. [35] 周寿增, 董清飞. 超强永磁体: 稀土铁系永磁材料[M]. 北京: 冶金工业出版社, 2004. [36] 田靖安,王亮,程远平,等. 煤层瓦斯压力分布规律及预测方法[J]. 采矿与安全工程学报,2008,25(4):481−485. TIAN Jing’an,WANG liang,CHENG Yuanping,et al. Research on distribution rule and forecast method of gas pressure in coal seam[J]. Journal of Mining and Safety Engineering,2008,25(4):481−485.
[37] 陈文胜,刘震. 淮北宿县矿区朱仙庄矿瓦斯压力分布规律研究[J]. 煤炭技术,2013,32(8):131−133. CHEN Wensheng,LIU Zhen. Study of gas pressure distribution rule of Zhuxianzhuang Mine of Suxian mining area in Huaibei[J]. Coal Technology,2013,32(8):131−133.
[38] 吴建亭,田慧玲,高建成. 平顶山矿区突出矿井瓦斯压力分布规律研究[J]. 中国煤层气,2014,11(6):3−6. WU Jianting,TIAN Huiling,GAO Jiancheng. Study on gas pressure distribution in outburst coal mine of Pingdingshan mining area[J]. China Coalbed Methane,2014,11(6):3−6.
[39] 薛熠,刘嘉,梁鑫,等. 瓦斯压力作用下煤岩的声发射非线性演化特征[J]. 岩土工程学报,2021,43(增刊1):241−245. XUE Yi,LIU Jia,LIANG Xin,et al. Nonlinear evolution characteristics of acoustic emission and fracture mechanism of coal under gas pressure[J]. Chinese Journal of Geotechnical Engineering,2021,43(Sup.1):241−245.
[40] 于世雷,佘九华,张羽,等. 煤层煤与瓦斯突出多指标量化评价方法探讨[J]. 煤炭技术,2022,41(5):119−124. DOI: 10.13301/j.cnki.ct.2022.05.029 YU Shilei,SHE Jiuhua,ZHANG Yu,et al. Quantitative risk assessment of coal seam coal and gas outburst hazard[J]. Coal Technology,2022,41(5):119−124. DOI: 10.13301/j.cnki.ct.2022.05.029
-
期刊类型引用(2)
1. 吴海波,刘钦节,王进朝,李智,白泽,席超强. HTI型煤层裂缝参数的地震AVOA响应正演模拟. 煤田地质与勘探. 2023(05): 146-154 . 本站查看
2. 刘子雄. 基于微地震向量扫描的煤层气井天然裂缝监测. 煤田地质与勘探. 2020(05): 204-210 . 本站查看
其他类型引用(1)