CO2强化煤层气产出与其同步封存实验研究

苏现波, 黄津, 王乾, 于世耀

苏现波,黄津,王乾,等. CO2强化煤层气产出与其同步封存实验研究[J]. 煤田地质与勘探,2023,51(1):176−184. DOI: 10.12363/issn.1001-1986.22.11.0873
引用本文: 苏现波,黄津,王乾,等. CO2强化煤层气产出与其同步封存实验研究[J]. 煤田地质与勘探,2023,51(1):176−184. DOI: 10.12363/issn.1001-1986.22.11.0873
SU Xianbo,HUANG Jin,WANG Qian,et al. Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage[J]. Coal Geology & Exploration,2023,51(1):176−184. DOI: 10.12363/issn.1001-1986.22.11.0873
Citation: SU Xianbo,HUANG Jin,WANG Qian,et al. Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage[J]. Coal Geology & Exploration,2023,51(1):176−184. DOI: 10.12363/issn.1001-1986.22.11.0873

 

CO2强化煤层气产出与其同步封存实验研究

基金项目: 国家自然科学基金重点项目(42230804);国家自然科学基金面上项目(42072193);河南省瓦斯地质与瓦斯治理重点实验室——省部共建国家重点实验室培育基地开放基金项目(WS2021B13);河南省自然科学基金青年项目(222300420173)
详细信息
    作者简介:

    苏现波,1963年生,男,河南孟津人,博士,教授,博士生导师,从事煤层气地质学与勘探开发研究工作. E-mail:suxianbo@hpu.edu.cn

    通讯作者:

    王乾,1991年生,男,河南安阳人,博士,讲师,从事非常规天然气勘探开发方面的研究. E-mail:941227308@qq.com

  • 中图分类号: P618.11

Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage

  • 摘要:

    长期以来针对CO2-ECBM已做了大量研究工作,然而有限的工业试验没能达到预期目的,使得这一煤层气强化技术推广应用欠缺。近些年随着各国碳中和路线的制定,CO2封存逐渐受到重视,煤储层可否作为CO2的封存空间、可否实现CO2驱替CH4和封存同步进行,又重新回归人们的视野。为此,以新疆准南区块目标煤层样为研究对象,采用不同CO2与CH4混合比例气体进行煤的吸附/解吸实验,探索混合气体比例对CO2-ECBM和CO2吸附封存潜力的影响。结果表明,随着混合气体CO2比例减少,CH4驱替效果降低,其中40%CH4+60%CO2混合气体的CO2残余量最多,在解吸至0.7 MPa时已有83.05%的CH4产出,而83.62%的CO2吸附残余在煤中,表明其CO2吸附封存潜力最佳。根据道尔顿分压分体积理论和Langmuir方程,对降压解吸阶段各混合气体解吸量与解吸率进行理论计算,结果显示,随混合气体CO2含量减少,煤中CO2的残余率、残余量以及CH4最终解吸率均降低。理论计算与实验中CH4解吸率和CO2残余量随混合气体组成变化趋势基本一致,表明混合气体中CO2占比越高,越有利于最大限度地提升CH4采收率以及煤储层CO2吸附封存潜力。研究认识为CO2-ECBM和煤储层CO2封存现场应用提供理论依据,为这一技术的推广应用提供实验支撑。

    Abstract:

    Abstract: Experimental study on CO2-enhanced coalbed methane production and its simultaneous storage Abstract: For a long time, a lot of work has been done on CO2-enhanced coalbed methane (CO2-ECBM), but the limited industrial trials failed to achieve the expected purpose, which prevented the promotion and application of CBM enhancement technology. In recent years, with the establishment of carbon neutrality routes in different countries, CO2 geological storage has gradually gained attention, and the questions of whether coal reservoirs can be treated as CO2 storage space and whether simultaneous CO2 displacing CH4 and storage can be achieved have returned to the spotlight. In this study, using the coal samples from Xinjiang Zhunnan coal region, the adsorption/desorption experiments of coal were carried out with different mixture ratios of CO2 and CH4 to explore the effects of gas composition on CO2-ECBM, as well as CO2 adsorptive storage potential. The results show that, the CH4 displacement effect decreases as the CO2 ratio of the mixed gas decreasing, among which the CO2 residual volume of 40% CH4+60% CO2 mixture is the highest, corresponding to 83.05% CH4 production and 83.62% CO2 storage by adsorption as the experimental pressure drops to 0.7 MPa during desorption processes. This indicates that its CO2 adsorptive storage potential is the best. The desorption volume and rate of each mixed gas during different depressurization and desorption stages were calculated according to the Dalton’s law for partial pressure and partial volume, as well as the Langmuir’s equation. The results indicate that, as the CO2 ratio of the mixed gas decreases, the CO2 residual rate and volume, as well as the final CH4 desorption rate, were decrease. The predicted trends of CH4 desorption rate and CO2 residual volume with gas mixture composition are generally consistent with those obtained by the experiments, indicating that high proportion of CO2 in the gas mixture enhances CH4 recovery, as well as CO2 adsorptive storage potential of the coal reservoir. This study can provide not only theoretical basis for the field application of CO2-ECBM and CO2 storage, but also experimental supports for the promotion of this technology.

  • 图  1   实验装置

    Fig.  1   Experimental devices

    图  2   新疆准南煤样CH4和CO2等温吸附曲线与吸附势曲线

    Fig.  2   Isothermal adsorption curves and adsorption characteristics curves of CH4 and CO2 from Zhunnan coal samples in Xinjiang

    图  3   不同比例混合气体解吸气体中CH4与CO2体积分数变化趋势

    Fig.  3   Changing trends in the concentration of CH4 and CO2 in the desorbed gas at different gas mixture ratios

    图  4   不同比例混合气体煤中CH4与CO2解吸率变化趋势

    Fig.  4   Changing trends in the desorption rates of CH4 and CO2 from coal at different gas mixture ratios

    图  5   CH4和CO2解吸率理论计算结果

    Fig.  5   Theoretical calculation results of CH4 and CO2 desorption rates

    表  1   新疆煤样工业分析和元素分析结果

    Table  1   Industrial analysis and elemental analysis results of coal samples in Xinjiang

    样品来源
    工业分析w/%

    元素分析w/%
    镜质体最大反射率Rmax/%
    MadAadVadFCadCHN(O+S)
    新疆准南区块1.822.8338.0857.2779.714.771.0314.490.67
    下载: 导出CSV

    表  2   不同比例混合气体吸附解吸实验数据

    Table  2   Data for adsorption and desorption experiments on mixed gases

    气体成分配比平衡压力
    段/MPa
    CH4解吸
    体积分数/%
    CO2解吸
    体积分数/%
    CH4分压/
    MPa
    CO2分压/
    MPa
    CH4解吸
    率/%
    CO2解吸
    率/%
    CH4解吸
    量/mL
    CO2解吸
    量/mL
    30%CH4+70%CO2 4.50~4.00 65.71 34.29 2.63 1.37 12.97 3.15 97.25 50.75
    4.00~3.50 67.02 32.98 2.35 1.15 22.53 05.35 71.71 35.29
    3.50~3.00 67.31 32.69 2.02 0.98 37.61 08.76 113.08 54.92
    3.00~2.50 69.51 30.49 1.74 0.76 51.04 11.51 100.79 44.21
    2.50~2.00 62.02 37.98 1.24 0.76 60.72 14.27 72.56 44.44
    2.00~1.50 53.35 46.65 0.80 0.70 73.10 19.31 92.83 81.17
    1.50~1.00 50.20 49.80 0.50 0.50 84.61 24.64 86.34 85.66
    1.00~0.70 41.50 58.50 0.29 0.41 88.98 27.51 32.79 46.22
    0.70~0.20 31.94 68.06 0.06 0.14 96.73 35.21 58.13 123.87
    0.20~0 18.99 81.01 0 0 98.86 39.44 15.95 68.05
    40%CH4+60%CO2 5.50~5.00 68.94 31.06 3.45 1.55 11.92 3.90 166.83 75.17
    5.00~4.50 75.25 24.75 3.39 1.11 19.87 5.81 111.37 36.63
    4.50~4.00 79.27 20.73 3.17 0.83 25.70 6.92 81.65 21.35
    4.00~3.50 80.37 19.63 2.81 0.69 32.42 8.11 94.03 22.97
    3.50~3.00 81.22 18.78 2.44 0.56 39.09 9.23 93.40 21.60
    3.00~2.50 83.19 16.81 2.08 0.42 46.04 10.25 97.33 19.67
    2.50~2.00 83.23 16.77 1.66 0.34 55.08 11.58 126.51 25.49
    2.00~1.50 81.91 18.09 1.23 0.27 64.62 13.11 133.51 29.49
    1.50~1.00 81.47 18.53 0.81 0.19 73.52 14.58 124.65 28.35
    1.00~0.70 79.41 20.59 0.56 0.14 83.05 16.38 133.41 34.59
    0.70~0.20 67.66 32.34 0.14 0.06 97.11 21.27 196.89 94.11
    0.20~0 22.75 77.25 0 0 98.24 24.04 15.70 53.30
    50%CH4+50%CO2 4.70~3.90 65.47 34.53 2.55 1.35 20.53 12.07 225.87 119.13
    3.90~3.50 70.48 29.52 2.47 1.03 28.03 15.57 82.46 34.54
    3.50~3.00 71.32 28.68 2.14 0.86 35.10 18.74 77.74 31.26
    3.00~2.50 71.61 28.39 1.79 0.71 46.56 23.80 126.03 49.97
    2.50~2.00 72.79 27.21 1.46 0.54 54.43 27.08 86.62 32.38
    2.00~1.50 79.76 20.24 1.20 0.30 64.36 29.89 109.27 27.73
    1.50~1.00 83.55 16.45 0.84 0.16 74.01 32.01 106.11 20.89
    1.00~0.60 74.77 25.23 0.45 0.15 84.27 35.87 112.90 38.10
    0.60~0.20 60.17 39.83 0.12 0.08 94.45 43.37 111.92 74.08
    0.20~0 21.97 78.03 0 0 96.60 51.91 23.73 84.27
    60%CH4+40%CO2 7.70~7.00 83.96 16.04 5.88 1.12 11.27 3.23 135.27 25.84
    7.00~6.50 81.58 18.42 5.30 1.20 18.35 5.63 84.92 19.17
    6.50~6.00 79.66 20.34 4.78 1.22 24.34 7.92 71.92 18.36
    6.00~5.50 81.26 18.74 4.47 1.03 30.70 10.12 76.32 17.60
    5.50~5.00 80.64 19.36 4.03 0.97 37.03 12.40 75.93 18.23
    5.00~4.50 80.41 19.59 3.62 0.88 43.13 14.63 73.18 17.83
    4.50~4.00 80.07 19.93 3.20 0.80 49.47 17.00 76.08 18.94
    4.00~3.50 79.56 20.44 2.78 0.72 56.02 19.52 78.60 20.19
    3.50~3.00 78.90 21.10 2.37 0.63 61.50 21.72 65.77 17.59
    3.00~2.50 77.70 22.30 1.94 0.56 67.61 24.35 73.28 21.03
    2.50~2.00 76.29 23.71 1.53 0.47 73.57 27.13 71.52 22.23
    2.00~1.50 74.64 25.36 1.12 0.38 79.45 30.13 70.59 23.98
    1.50~1.00 72.02 27.98 0.72 0.28 85.13 33.43 68.14 26.47
    1.00~0.70 66.58 33.42 0.47 0.23 90.37 37.38 62.91 31.58
    0.70~0.40 54.11 45.89 0.22 0.18 94.79 43.00 53.03 44.97
    0.40~0.20 35.01 64.99 0.07 0.13 96.83 48.69 24.51 45.49
    0.20~0 17.00 83.00 0 0 97.61 54.37 9.32 45.48
    70%CH4+30%CO2 7.00~6.30 93.62 6.38 5.90 0.40 8.43 1.34 59.04 4.02
    6.30~5.50 93.68 6.32 5.15 0.35 19.86 3.14 80.00 5.40
    5.50~5.00 92.00 8.00 4.60 0.40 25.00 4.18 35.96 3.13
    5.00~4.50 93.29 6.71 4.20 0.30 31.00 5.19 42.02 3.02
    4.50~4.00 93.48 6.52 3.74 0.26 36.20 6.04 36.38 2.54
    4.00~3.50 93.18 6.82 3.26 0.24 42.44 7.10 43.69 3.20
    3.50~3.00 89.12 10.88 2.67 0.33 47.56 8.56 35.81 4.37
    3.00~2.50 92.61 7.39 2.32 0.18 53.87 9.73 44.18 3.53
    2.50~2.00 91.15 8.85 1.82 0.18 59.07 10.91 36.42 3.50
    2.00~1.60 91.69 8.31 1.40 0.13 66.98 12.58 55.32 5.01
    1.60~1.20 90.48 9.52 1.09 0.10 72.98 14.06 42.03 4.42
    1.20~0.90 88.47 11.53 0.80 0.10 78.26 15.66 36.97 4.82
    0.90~0.60 83.43 16.57 0.50 0.10 84.56 18.58 44.08 8.75
    0.60~0.20 74.86 25.14 0.15 0.05 89.80 22.69 36.68 12.32
    0.20~0 58.74 41.26 0 0 92.27 26.73 17.27 12.13
    下载: 导出CSV
  • [1]

    MANAB M,SANTANU M. A review of experimental research on enhanced coal bed methane (ECBM) recovery via CO2 sequestration[J]. Earth–Science Reviews,2018,179:392−410.

    [2] 桑树勋,王冉,周效志,等. 论煤地质学与碳中和[J]. 煤田地质与勘探,2021,49(1):1−11. DOI: 10.3969/j.issn.1001-1986.2021.01.001

    SANG Shuxun,WANG Ran,ZHOU Xiaozhi,et al. Review on carbon neutralization associated with coal geology[J]. Coal Geology & Exploration,2021,49(1):1−11. DOI: 10.3969/j.issn.1001-1986.2021.01.001

    [3] 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探,2018,46(5):1−9. DOI: 10.3969/j.issn.1001-1986.2018.05.001

    SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration,2018,46(5):1−9. DOI: 10.3969/j.issn.1001-1986.2018.05.001

    [4]

    FAN Chaojun,ELSWORTH D,LI Sheng,et al. Modelling and optimization of enhanced coalbed methane recovery using CO2/N2 mixtures[J]. Fuel,2019,253:1114−1129. DOI: 10.1016/j.fuel.2019.04.158

    [5]

    YU Hongguan,YUAN Jian,GUO Weijia,et al. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection[J]. International Journal of Coal Geology,2008,73(2):156−166. DOI: 10.1016/j.coal.2007.04.005

    [6] 张松航,张守仁,唐书恒,等. 无烟煤中甲烷和二氧化碳混合气吸附运移规律[J]. 煤炭学报,2021,46(2):544−555. DOI: 10.13225/j.cnki.jccs.XR20.1746

    ZHANG Songhang,ZHANG Shouren,TANG Shuheng,et al. Adsorption and transport of methane and carbon dioxide mixture in anthracite[J]. Journal of China Coal Society,2021,46(2):544−555. DOI: 10.13225/j.cnki.jccs.XR20.1746

    [7] 郑贵强. 不同煤阶煤的吸附、扩散及渗流特征实验和模拟研究[D]. 北京: 中国地质大学(北京), 2012.

    ZHENG Guiqiang. Experimental and simulation study on the sorption, diffusion and seepage characters in different–ranked coals[D]. Beijing: China University of Geosciences (Beijing), 2012.

    [8] 李伟. CO2–ECBM中煤储层结构对CH4和CO2吸附/解吸影响的研究[D]. 太原: 太原理工大学, 2018.

    LI Wei. Influences of coal reservoir structure on adsorption/desorption of CH4 and CO2 associated with CO2–ECBM[D]. Taiyuan: Taiyuan University of Technology, 2018.

    [9]

    WANG Qianqian,ZHANG Dengfeng,WANG Haohao,et al. Influence of CO2 exposure on high–pressure methane and CO2 adsorption on various rank coals:Implications for CO2 sequestration in coal seams[J]. Energy & Fuels,2015,29(6):3785−3795.

    [10]

    ZHANG Xiaogang,RANJITH P G. Experimental investigation of effects of CO2 injection on enhanced methane recovery in coal seam reservoirs[J]. Journal of CO2 Utilization,2019,33:394−404. DOI: 10.1016/j.jcou.2019.06.019

    [11] 苏现波,陈润,林晓英,等. 吸附势理论在煤层气吸附/解吸中的应用[J]. 地质学报,2008,82(10):1382−1389. DOI: 10.3321/j.issn:0001-5717.2008.10.012

    SU Xianbo,CHEN Run,LIN Xiaoying,et al. Application of adsorption potential theory in the fractionation of coalbed gas during the process of adsorption/desorption[J]. Acta Geologica Sinica,2008,82(10):1382−1389. DOI: 10.3321/j.issn:0001-5717.2008.10.012

    [12]

    XIE Heping,LI Xiaochun,FANG Zhiming,et al. Carbon geological utilization and storage in China:Current status and perspectives[J]. Acta Geotechnica,2014,9(1):7−27. DOI: 10.1007/s11440-013-0277-9

    [13]

    WHITE C M,SMITH D H,JONES K L,et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery:A review[J]. Energy & Fuels,2005,19(3):659−724.

    [14]

    BERGEN F V, KRZYSTOLIK P, WAGENINGEN N V, et al. Production of gas from coal seams in the Upper Silesian Coal Basin in Poland in the post–injection period of an ECBM pilot site[J]. International Journal of Coal Geology, 2009, 77(1/2): 175–187.

    [15]

    WONG S, MACDONALD D, ANDREI S, et al. Conceptual economics of full scale enhanced coalbed methane production and CO2 storage in anthracitic coals at South Qinshui Basin, Shanxi, China[J]. International Journal of Coal Geology, 2010, 82(3–4): 280–286.

    [16] 叶建平,张兵,WONG S. 山西沁水盆地柿庄北区块3#煤层注入埋藏CO2提高煤层气采收率试验和评价[J]. 中国工程科学,2012,14(2):38−44. DOI: 10.3969/j.issn.1009-1742.2012.02.006

    YE Jianping,ZHANG Bing,WONG S. Test of and evaluation on elevation of coalbed methane recovery ratio by injecting and burying CO2 for 3# coal seam of north section of Shizhuang,Qinshui Basin,Shanxi[J]. Strategic Study of CAE,2012,14(2):38−44. DOI: 10.3969/j.issn.1009-1742.2012.02.006

    [17]

    CONNELL L D,PAN Z,CAMILLERI M,et al. Description of a CO2 enhanced coal bed methane field trial using a multi–lateral horizontal well[J]. International Journal of Greenhouse Gas Control,2014,26:204−219. DOI: 10.1016/j.ijggc.2014.04.022

    [18] 陈浮,于昊辰,卞正富,等. 碳中和愿景下煤炭行业发展的危机与应对[J]. 煤炭学报,2021,46(6):1808−1820. DOI: 10.13225/j.cnki.jccs.2021.0368

    CHEN Fu,YU Haochen,BIAN Zhengfu,et al. How to handle the crisis of coal industry in China under the vision of carbon neutrality[J]. Journal of China Coal Society,2021,46(6):1808−1820. DOI: 10.13225/j.cnki.jccs.2021.0368

    [19] 王双明,申艳军,孙强,等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60.

    WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the“dual carbon”target[J]. Journal of China Coal Society,2022,47(1):45−60.

    [20] 降文萍,崔永君. 深部煤层封存CO2的地质主控因素探讨[J]. 中国煤炭地质,2010,22(11):1−6. DOI: 10.3969/j.issn.1674-1803.2010.11.01

    JIANG Wenping,CUI Yongjun. A discussion on main geologic controlling factors of CO2 sequestration in deep coal seams[J]. Coal Geology of China,2010,22(11):1−6. DOI: 10.3969/j.issn.1674-1803.2010.11.01

    [21]

    ZHANG Songhang,TANG Shuheng,LI Zhongcheng,et al. Competitive sorption and diffusion of methane and carbon dioxide mixture in carboniferous−permian anthracite of South Qinshui Basin,China[J]. Arabian Journal of Geosciences,2020,13(24):1292. DOI: 10.1007/s12517-020-06303-9

    [22] 王向浩,王延忠,张磊,等. 高、低煤阶CO2与CH4竞争吸附解吸置换效果分析[J]. 非常规油气,2018,5(3):46−51. DOI: 10.3969/j.issn.2095-8471.2018.03.007

    WANG Xianghao,WANG Yanzhong,ZHANG Lei,et al. Research on CO2,CH4 competitive adsorption,desorption and replacement effect of high and low rank coal[J]. Unconventional Oil & Gas,2018,5(3):46−51. DOI: 10.3969/j.issn.2095-8471.2018.03.007

图(5)  /  表(2)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  20
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16
  • 修回日期:  2023-01-14
  • 录用日期:  2023-01-24
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回