基于测井参数的煤储层地应力计算方法研究以延川南区块为例

常闯, 李松, 汤达祯, 冯鹏

常闯,李松,汤达祯,等. 基于测井参数的煤储层地应力计算方法研究−以延川南区块为例[J]. 煤田地质与勘探,2023,51(5):23−32. DOI: 10.12363/issn.1001-1986.22.09.0726
引用本文: 常闯,李松,汤达祯,等. 基于测井参数的煤储层地应力计算方法研究−以延川南区块为例[J]. 煤田地质与勘探,2023,51(5):23−32. DOI: 10.12363/issn.1001-1986.22.09.0726
CHANG Chuang,LI Song,TANG Dazhen,et al. In-situ stress calculation for coal reservoirs based on log parameters: A case study of the southern Yanchuan block[J]. Coal Geology & Exploration,2023,51(5):23−32. DOI: 10.12363/issn.1001-1986.22.09.0726
Citation: CHANG Chuang,LI Song,TANG Dazhen,et al. In-situ stress calculation for coal reservoirs based on log parameters: A case study of the southern Yanchuan block[J]. Coal Geology & Exploration,2023,51(5):23−32. DOI: 10.12363/issn.1001-1986.22.09.0726

 

基于测井参数的煤储层地应力计算方法研究—以延川南区块为例

基金项目: 国家自然科学基金项目(42072198,42130802);中央高校基本科研业务费项目(265QZ2021011)
详细信息
    作者简介:

    常闯,2000年生,男,黑龙江五常人,硕士,研究方向为矿产普查与勘探. E-mail:1751242951@qq.com

    通讯作者:

    李松,1985年生,男,江苏徐州人,博士,副教授,从事非常规油气开发地质工作. E-mail:lisong@cugb.edu.cn

  • 中图分类号: P618.11

In-situ stress calculation for coal reservoirs based on log parameters: A case study of the southern Yanchuan block

  • 摘要:

    地应力对煤储层渗透率的影响贯穿整个煤层气开采过程,进而影响煤层气的运移和产出效果。为了探讨煤层地应力的有效计算方法,以鄂尔多斯盆地东缘延川南区块为例,基于研究区主力煤层测井、试井资料,及煤岩泊松比、弹性模量、储层压力等参数计算结果,构建适用于该区煤储层地应力的计算模型,并对研究区地应力分布特征进行剖析。结果表明:(1)相比于组合弹簧模型,修改后的葛氏模型计算的煤层水平主应力平均相对误差更小,更适用于延川南区块地应力预测;(2)研究区2号煤层最小水平主应力($ {\sigma }_{\mathrm{h}} $)为9.23~29.36 MPa,平均16.87 MPa,最大水平主应力($ {\sigma }_{\mathrm{H}} $)为10.74~44.71 MPa,平均25.49 MPa,垂向主应力($ {\sigma }_{\mathrm{v}} $)为15.64~39.51 MPa,平均27.07 MPa;(3)平面上,研究区以西掌断裂带为分界线,煤储层地应力呈现西北高、东南低的特征;垂向上,随煤层埋深的增大,3个方向的应力及侧压系数均呈现递增的趋势,应力场状态也由正断型($ {\sigma }_{\mathrm{v}} $>$ {\sigma }_{\mathrm{H}} $>$ {\sigma }_{\mathrm{h}} $)逐渐向走滑型($ {\sigma }_{\mathrm{H}} $$ {\sigma }_{\mathrm{v}} $>$ {\sigma }_{\mathrm{h}} $)转变,且区内煤储层侧压系数及应力场状态的变化与小型逆断层的分布密切相关。修改后的葛氏模型预测精准度达92.15%,且可通过修改构造应力系数应用到其他区块,对研究区深部煤层气乃至对其他区块深部煤层气开发具有重要意义。

    Abstract:

    In-situ stress affects the permeability of coal reservoirs throughout the extraction of coalbed methane (CBM) and further influences the migration and output of CBM. To explore the effective methods for calculating the in-situ stress in coal seams, this study investigated the southern Yanchuan block at the eastern margin of the Ordos Basin. Based on the logs and well test data of the major coal seams in the study area, as well as the calculation results of parameters including the coal rock Poisson's ratio, modulus of elasticity, and reservoir pressure of coals, this study built a calculation model for the in-situ stress in the coal reservoirs of the study area and analyzed the distribution of in-situ stress in the study area. The results show that: (1) Compared with the combined spring model, the modified Ge’s model is subjected to a lower average relative error of the horizontal principal stress of coal seams and is more applicable to the prediction of the in-situ stress in the southern Yanchuan block; (2) The No.2 coal seam in the study area has a minimum horizontal principal stress ($ {\sigma }_{\mathrm{h}} $) of 9.23‒29.36 MPa (average: 16.87 MPa), a maximum horizontal principal stress ($ {\mathrm{\sigma }}_{\mathrm{H}} $) of 10.74‒44.71 MPa (average: 25.49 MPa), and a vertical principal stress (${\sigma}_{ \mathrm{v}}$) of 15.64‒39.51 MPa (average: 27.07 MPa); (3) Planarly, the in-situ stress in the coal reservoirs of the study area is high in the northwest and low in the southeast with the Xizhang fault zone as the boundary. Vertically, with an increase in the burial depth of coal seams, ${\sigma }_{ \mathrm{v}}$, ${\sigma }_{ \mathrm{H}}$, ${\sigma }_{ \mathrm{h}}$, and the lateral pressure coefficient all show an upward trend, and the stress field state gradually transforms from the normal fault type ($ {\sigma }_{\mathrm{v}} $>$ {\sigma }_{\mathrm{H}} $> $ {\sigma }_{\mathrm{h}} $) to the strike-slip type ($ {\sigma }_{\mathrm{H}} $$ {\sigma }_{\mathrm{v}} $> $ {\sigma }_{\mathrm{h}} $). Moreover, the changes in the lateral pressure coefficient and stress field state of the coal reservoirs in the study area are closely related to the distribution of small reverse faults. The modified Ge's model has a prediction accuracy of 92.15% and can be applied to other blocks by modifying the tectonic stress coefficients. Therefore, this model holds great significance for the extraction of deep CBM in the study area and even other blocks.

  • 图  1   延川南区块2号煤层构造纲要

    Fig.  1   Geological structure outline map of No.2 coal seam in the southern Yanchuan block

    图  2   地应力预测值与实测值对比

    注:0.03为相对误差,其他同。

    Fig.  2   Comparison of predicted and measured values of in-situ stress

    图  3   延川南区块2号煤层地应力平面分布

    Fig.  3   Planar distribution of in-situ stress in the No.2 coal seam of the southern Yanchuan block

    图  4   延川南煤层地应力与深度关系

    Fig.  4   In-situ stress vs. depth of coal seams in the southern Yanchuan block

    图  5   延川南煤层侧压系数与深度关系

    Fig.  5   Lateral pressure coefficient vs. depth of coal seams in the southern Yanchuan block

    图  6   延川南侧压系数分布现象分析

    Fig.  6   Distribution of lateral pressure coefficient in the southern Yanchuan block

    表  1   地应力建模数据及预测结果

    Table  1   Modeling data and prediction results of in-situ stress

    类型不同井号建模数据
    A1A2A3A4A5A6A7A8A9A10A11
    最大水平主应力/MPa实测19.1425.3116.1318.7626.4529.3915.309.5414.6635.9232.91
    最小水平主应力/MPa实测13.0215.4214.5411.4618.5517.3214.748.9912.2121.4121.83
    类型不同井号预测结果
    A12A13A14A15A16A17
    最大水平主应力/MPa实测26.8125.3419.1420.5417.1526.63
    预测27.7522.3017.3124.6218.9327.40
    最小水平主应力/MPa实测20.3415.0212.5516.7013.6721.22
    预测21.0616.0212.5118.6315.9620.25
    下载: 导出CSV
  • [1] 孟召平,田永东,李国富. 沁水盆地南部地应力场特征及其研究意义[J]. 煤炭学报,2010,35(6):975−981.

    MENG Zhaoping,TIAN Yongdong,LI Guofu. Characteristics of in–situ stress field in southern Qinshui Basin and its research significance[J]. Journal of China Coal Society,2010,35(6):975−981.

    [2] 陈世达,汤达祯,陶树,等. 煤层气储层地应力场宏观分布规律统计分析[J]. 煤炭科学技术,2018,46(6):57−63.

    CHEN Shida,TANG Dazhen,TAO Shu,et al. Statistic analysis on macro distribution law of geo–stress field in coalbed methane reservoir[J]. Coal Science and Technology,2018,46(6):57−63.

    [3] 郭涛. 贵州省织金区块岩脚向斜煤层气富集高产规律研究[J]. 煤田地质与勘探,2021,49(2):62−69.

    GUO Tao. The enrichment and high yield law of CBM in Yanjiao syncline in Zhijin Block,Guizhou Province[J]. Coal Geology & Exploration,2021,49(2):62−69.

    [4] 刘大锰,周三栋,蔡益栋,等. 地应力对煤储层渗透性影响及其控制机理研究[J]. 煤炭科学技术,2017,45(6):1−8.

    LIU Dameng,ZHOU Sandong,CAI Yidong,et al. Study on effect of geo–stress on coal permeability and its controlling mechanism[J]. Coal Science and Technology,2017,45(6):1−8.

    [5] 唐书恒,朱宝存,颜志丰. 地应力对煤层气井水力压裂裂缝发育的影响[J]. 煤炭学报,2011,36(1):65−69.

    TANG Shuheng,ZHU Baocun,YAN Zhifeng. Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J]. Journal of China Coal Society,2011,36(1):65−69.

    [6] 李松,汤达祯,许浩,等. 应力条件制约下不同埋深煤储层物性差异演化[J]. 石油学报,2015,36(增刊1):68−75.

    LI Song,TANG Dazhen,XU Hao,et al. Evolution of physical differences in various buried depth of coal reservoirs under constraint of stress[J]. Acta Petrolei Sinica,2015,36(Sup.1):68−75.

    [7] 李松,汤达祯,许浩,等. 深部煤层气储层地质研究进展[J]. 地学前缘,2016,23(3):10−16.

    LI Song,TANG Dazhen,XU Hao,et al. Progress in geological researches on the deep coalbed methane reservoirs[J]. Earth Science Frontiers,2016,23(3):10−16.

    [8] 鞠玮,姜波,秦勇,等. 多煤层条件下现今地应力特征与煤层气开发[J]. 煤炭学报,2020,45(10):3492−3500.

    JU Wei,JIANG Bo,QIN Yong,et al. Characteristics of present–day in–situ stress field under multi–seam conditions:Implications for coalbed methane development[J]. Journal of China Coal Society,2020,45(10):3492−3500.

    [9] 鞠玮,王胜宇,姜波,等. 滇东–黔西地区现今地应力场与二叠系煤储层渗透率特征[J]. 煤炭科学技术,2022,50(2):179−186.

    JU Wei,WANG Shengyu,JIANG Bo,et al. Characteristics of present−day in−situ stress field and the Permian coal reservoir permeability in the eastern Yunnan and western Guizhou regions[J]. Coal Science and Technology,2022,50(2):179−186.

    [10] 黄继新,彭仕宓,王小军,等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报,2006,27(6):65−69.

    HUANG Jixin,PENG Shimi,WANG Xiaojun,et al. Applications of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica,2006,27(6):65−69.

    [11] 邹贤军,陈亚琳. 四川盆地涪陵地区龙马溪组页岩横向各向同性地应力测井评价方法[J]. 天然气地球科学,2018,29(12):1775−1780.

    ZOU Xianjun,CHEN Yalin. Geostress logging evaluation method of Longmaxi Formation shale in Fuling area based on transversely isotropic model,Sichuan Basin[J]. Natural Gas Geoscience,2018,29(12):1775−1780.

    [12] 杨东辉,赵毅鑫,张村,等. 循环加载对沉积岩岩石Kaiser效应影响的试验研究[J]. 岩石力学与工程学报,2018,37(12):2697−2708.

    YANG Donghui,ZHAO Yixin,ZHANG Cun,et al. Experimental study on the influence of cyclic loading on Kaiser effect of sedimentary rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(12):2697−2708.

    [13]

    HUBBERT M K,WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of the AIME,1957,210(1):153−168. DOI: 10.2118/686-G

    [14] 刘志强. 煤层地应力预测方法研究: 以郑庄煤层气区块为例[D]. 北京: 中国地质大学(北京), 2014.

    LIU Zhiqiang. Method of estimating in–situ stresses: A case study of Zhengzhuang coalbed methane field[D]. Beijing: China University of Geosciences (Beijing), 2014.

    [15] 印兴耀,马妮,马正乾,等. 地应力预测技术的研究现状与进展[J]. 石油物探,2018,57(4):488−504.

    YIN Xingyao,MA Ni,MA Zhengqian,et al. Review of in–situ stress prediction technology[J]. Geophysical Prospecting for Petroleum,2018,57(4):488−504.

    [16] 蔡美峰. 地应力测量原理和技术[M]. 北京: 科学出版社, 1995.
    [17] 葛洪魁,林英松,王顺昌. 地应力测试及其在勘探开发中的应用[J]. 石油大学学报(自然科学版),1998,22(1):94−99.

    GE Hongkui,LIN Yingsong,WANG Shunchang. In–situ stresses determination technique and its applications in petroleum exploration and development[J]. Journal of the University of Petroleum (Edition of Natural Science),1998,22(1):94−99.

    [18] 冯鹏,李松,汤达祯,等. 支持向量机在煤层地应力预测中的应用[J]. 现代地质,2022,36(5):1333−1340.

    FENG Peng,LI Song,TANG Dazhen,et al. Application of support vector machine in prediction of coal seam stress[J]. Geoscience,2022,36(5):1333−1340.

    [19] 陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探,2021,49(2):13−20.

    CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):13−20.

    [20] 高玉巧,李鑫,何希鹏,等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探,2021,49(2):21−27.

    GAO Yuqiao,LI Xin,HE Xipeng,et al. Study on the main controlling geological factors of high yield deep CBM in southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):21−27.

    [21] 余林. 延川南地区水文地质条件及煤层气成藏[J]. 煤田地质与勘探,2017,45(2):69−74.

    YU Lin. Groundwater conditions and relative CBM accumulation feature in Yanchuannan area[J]. Coal Geology & Exploration,2017,45(2):69−74.

    [22] 原俊红,曹丽文,付玉通. 延川南地区深部煤层气U型水平井压裂参数优化设计[J]. 煤田地质与勘探,2018,46(5):175−181.

    YUAN Junhong,CAO Liwen,FU Yutong. Optimal design of the parameters of U–shaped horizontal well for deep coalbed methane in southern Yanchuan[J]. Coal Geology & Exploration,2018,46(5):175−181.

    [23] 吴群. 延川南煤储层地应力条件及其对煤层气产能的影响[D]. 西安: 西北大学, 2012.

    WU Qun. Study on in–situ stress condition of coal reservoir and effects on CBM well production in Yanchuannan Block, Ordos Basin[D]. Xi’an: Northwest University, 2012.

    [24] 赵景辉,高玉巧,陈贞龙,等. 鄂尔多斯盆地延川南区块深部地应力状态及其对煤层气开发效果的影响[J]. 中国地质,2021,48(3):785−793.

    ZHAO Jinghui,GAO Yuqiao,CHEN Zhenlong,et al. Stress state of deep seam and its influence on development performance of CBM wells in south Yanchuan Block,Ordos Basin[J]. Geology in China,2021,48(3):785−793.

    [25] 付玉通,桑树勋,崔彬,等. 延川南区块深部煤层气U型分段压裂水平井地质适用性研究[J]. 煤田地质与勘探,2018,46(5):146−152.

    FU Yutong,SANG Shuxun,CUI Bin,et al. Geological adaptability of deep CBM U–shaped staged fracturing horizontal well in the south block of Yanchuan[J]. Coal Geology & Exploration,2018,46(5):146−152.

    [26] 鞠玮, 牛小兵, 侯贵廷, 等. 鄂尔多斯盆地现今地应力场与致密油勘探开发[M]. 徐州: 中国矿业大学出版社, 2021.
    [27]

    BROWN E T,HOEK E. Trends in relationships between measured in–situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1978,15(4):211−215.

    [28]

    SCHMITT D R,ZOBACK M D. Poroelastic effects in the determination of the maximum horizontal principal stress in hydraulic fracturing tests:A proposed breakdown equation employing a modified effective stress relation for tensile failure[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1989,26(6):499−506.

    [29]

    MATTHEWS W R,KELLY J. How to predict formation pressure and fracture gradient[J]. Oil and Gas Journal,1967,65:92−106.

    [30]

    ANDERSON E M. The dynamics of faulting and dyke formation with applications to Britain[M]. Edinburgh: Oliver and Boyd, 1951.

    [31]

    DAINES S R. Prediction of fracture pressures for wildcat wells[J]. Journal of Petroleum Technology,2019,34(4):863−872.

    [32]

    LI Peng,CAI Meifeng. Distribution law of in situ stress field and regional stress field assessments in the Jiaodong Peninsula,China[J]. Journal of Asian Earth Sciences,2018,166:66−79. DOI: 10.1016/j.jseaes.2018.07.021

    [33] 李志明, 张金珠. 地应力与油气勘探开发[M]. 北京: 石油工业出版社, 1997.
    [34] 智慧文,胡永章. 元坝气田地应力测井计算研究[J]. 物探化探计算技术,2015,37(6):743−748.

    ZHI Huiwen,HU Yongzhang. Study on well logging with crustal stress calculation in Yuanba gas field[J]. Computing Techniques for Geophysical and Geochemical Exploration,2015,37(6):743−748.

    [35] 黄荣樽,庄锦江. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺,1986(3):1−14.

    HUANG Rongzun,ZHUANG Jinjiang. A new method for predicting formation fracture pressure[J]. Oil Drilling & Production Technology,1986(3):1−14.

    [36] 熊先钺,郭大立,曹代勇,等. 基于常规测井资料的煤层岩石参数解释方法[J]. 煤矿开采,2014,19(3):13−16.

    XIONG Xianyue,GUO Dali,CAO Daiyong,et al. Explanation method of coal and rock parameters based on conventional log information[J]. Coal Mining Technology,2014,19(3):13−16.

    [37] 陈宝宁,王宁. 异常流体压力研究进展与方法实践[J]. 油气地质与采收率,2001,8(1):35−37.

    CHEN Baoning,WANG Ning. Research advance and method practice of anomalous fluid pressure[J]. Petroleum Geology and Recovery Efficiency,2001,8(1):35−37.

    [38] 刘彦飞. 韩城地区深/浅部煤层气开发地质条件与产能对比研究[D]. 北京: 中国地质大学(北京), 2016.

    LIU Yanfei. A comparative study on the development geologic conditions and productivity of deep and shallow CBM wells in Hancheng Area[D]. Beijing: China University of Geosciences (Beijing), 2016.

    [39]

    GASSMANN F. Elastic waves through a packing of spheres[J]. Geophysics,1951,16:673−685. DOI: 10.1190/1.1437718

    [40]

    MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook: Tools for seismic analysis of porous media[M]. New York: Cambridge University Press, 2003.

    [41] 余雄鹰,王越之,李自俊. 声波法计算水平主地应力值[J]. 石油学报,1996,17(3):59−63.

    YU Xiongying,WANG Yuezhi,LI Zijun. Calculation of horizontal principal in–situ stress with acoustic wave method[J]. Acta Petrolei Sinica,1996,17(3):59−63.

    [42]

    FINKBEINER T, MOOS D, DEROSE W, et al. Wellbore stability evaluation for horizontal hole completion: A case study[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition. Brisbane, 2000.

    [43] 王丹,赵峰华,耿昊,等. 临汾区块上主力煤层地应力场特征[J]. 断块油气田,2015,22(3):287−290.

    WANG Dan,ZHAO Fenghua,GENG Hao,et al. Characteristics of in−situ stress field for upper main coal seam of Linfen Block[J]. Fault–Block Oil and Gas Field,2015,22(3):287−290.

    [44]

    ZHAO Junlong,TANG Dazhen,XU Hao,et al. Characteristic of in–situ stress and its control on the coalbed methane reservoir permeability in the eastern margin of the Ordos Basin,China[J]. Rock Mechanics and Rock Engineering,2016,49:3307−3322. DOI: 10.1007/s00603-016-0969-1

图(6)  /  表(1)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  40
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-24
  • 修回日期:  2023-03-20
  • 录用日期:  2023-05-24
  • 网络出版日期:  2023-05-14
  • 刊出日期:  2023-05-24

目录

    /

    返回文章
    返回