煤矿掘进工作面低照度视频增强技术研究

张旭辉, 杨红强, 白琳娜, 石硕, 杜昱阳, 张超, 万继成, 杨文娟, 毛清华, 董征

张旭辉,杨红强,白琳娜,等. 煤矿掘进工作面低照度视频增强技术研究[J]. 煤田地质与勘探,2023,51(1):309−316. DOI: 10.12363/issn.1001-1986.22.09.0689
引用本文: 张旭辉,杨红强,白琳娜,等. 煤矿掘进工作面低照度视频增强技术研究[J]. 煤田地质与勘探,2023,51(1):309−316. DOI: 10.12363/issn.1001-1986.22.09.0689
ZHANG Xuhui,YANG Hongqiang,BAI Linna,et al. Research on low illumination video enhancement technology in coal mine heading face[J]. Coal Geology & Exploration,2023,51(1):309−316. DOI: 10.12363/issn.1001-1986.22.09.0689
Citation: ZHANG Xuhui,YANG Hongqiang,BAI Linna,et al. Research on low illumination video enhancement technology in coal mine heading face[J]. Coal Geology & Exploration,2023,51(1):309−316. DOI: 10.12363/issn.1001-1986.22.09.0689

 

煤矿掘进工作面低照度视频增强技术研究

基金项目: 国家自然科学基金项目(52104166);陕煤联合基金项目(2021JLM-03)
详细信息
    作者简介:

    张旭辉,1972年生,男,陕西凤翔人,博士,教授,博士生导师,研究方向为矿山设备状态监测与故障诊断、机电耦合建模与非线性动力学、数字孪生驱动远程虚拟操控、新型能量收集技术及应用、机电产品绿色设计技术与评价等. E-mail:zhangxh@xust.edu.cn

    通讯作者:

    杨红强,1995年生,男,甘肃天水人,硕士研究生,研究方向为智能检测与控制、机器视觉等. E-mail:1757307011@qq.com

  • 中图分类号: TN98;TD421

Research on low illumination video enhancement technology in coal mine heading face

  • 摘要:

    针对煤矿掘进工作面视频光照较低、亮度不均、纹理模糊、噪声较多等问题,提出一种煤矿掘进工作面低照度视频增强算法。首先,利用卷积的可分离性将视频图像进行一维水平卷积与垂直卷积,再利用完美反射法实现视频图像自动白平衡,并使用图像混合增强技术提高视频图像整体亮度。然后,基于大气散射模型与暗通道先验方法,通过递归分割将图像分割为高光区、中间调和暗调区,并求取对应区间通道像素最大值,将其3者均值作为大气光照估计值,引入调节因子对透射率进行调整优化,并使用拉普拉斯锐化操作,增加图像高频成分、抑制图像低频成分,提高图像对比度。最后,基于改进的大气散射模型对掘进工作面低照度视频进行去雾处理。实验结果表明,视频增强算法能够对煤矿掘进工作面低照度视频进行实时增强、去雾处理,避免了视频图像暗淡、失真、模糊和突变等问题。相较于Retinex算法、ALTM算法和暗通道先验算法,视频增强算法大幅度提高了视频图像的信息熵、标准差和平均梯度,且具有较好的实时处理速度,能够为掘进工作面视频的目标识别、目标跟踪、目标监测和图像分割等后续处理提供优质、可靠的支撑。

    Abstract:

    Aiming at overcoming low illumination, uneven brightness, blurry texture and more noise in the video of coal mine heading face, a low illumination video enhancement algorithm was proposed for coal mine heading face. Firstly, the separability of convolution was utilized to carry out one-dimensional horizontal and vertical convolution of video images, then the perfect reflection method was used to achieve the automatic white balance, and the image hybrid enhancement technology was utilized to improve the overall brightness of the video images. Then, the image was divided into the highlight area, the middle tone area and the dark tone area by recursive segmentation based on the atmospheric scattering model and the dark channel prior method, and the maximum channel pixel of the corresponding interval was obtained. Besides, the mean value of the three maximum pixel values was taken as the estimation value of atmospheric illumination, and the transmittance was adjusted and optimized by introducing the adjustment factor. Meanwhile, the Laplacian sharpening process was used to increase the high frequency component and suppress the low frequency component of the image to increase the image contrast. Finally, the low-illumination video of heading face was dehazed based on the improved atmospheric scattering model. The experimental results show that the proposed video enhancement algorithm could enhance and dehaze the low-illumination video of coal mine heading face in real time, which avoids the problems of dimness, distortion, blurring and mutation of video images. Compared with Retinex algorithm, ALTM algorithm and dark channel prior algorithm, the proposed video enhancement algorithm significantly improves the information entropy, standard deviation and average gradient of the video image, and has a higher real-time processing speed, which can provide high-quality and reliable support for subsequent processings such as video target recognition, target tracking, target monitoring and image segmentation of heading face video.

  • 图  1   总体方案

    Fig.  1   Overall scheme

    图  2   可分离高斯滤波前后效果对比

    Fig.  2   Effect comparison before and after separable Gaussian filtering

    图  3   自动白平衡前后效果对比

    Fig.  3   Effect comparison before and after automatic white balance

    图  4   混合增强前后效果对比

    Fig.  4   Effect comparison before and after mixed enhancement

    图  5   去雾前后效果对比

    Fig.  5   Comparison of effects before and after fog removal

    图  6   拉普拉斯锐化前后效果对比

    Fig.  6   Comparison of effects before and after Laplacian sharpening

    图  7   不同算法增强效果

    Fig.  7   Different algorithm enhancement effect

    图  8   综合指标柱状图

    Fig.  8   Comprehensive index histogram

    表  1   不同算法评价指标结果

    Table  1   Evaluation results of different algorithms

    算法图像序列信息熵标准差平均梯度处理时间/ms
    Retinex算法15.5332.624.37374
    25.8233.145.51365
    35.7833.744.98352
    46.6236.926.47353
    56.6637.255.92457
    ALTM算法15.6933.034.34992
    25.9333.635.46992
    35.9034.234.92985
    46.6236.926.47353
    56.6637.255.92457
    暗通道
    先验算法
    15.1524.453.392943
    25.1723.264.022931
    35.1924.013.742915
    46.1628.555.602951
    56.1628.694.793777
    本文算法16.2439.484.60343
    26.0237.796.05344
    36.0438.065.66302
    46.9741.076.81304
    56.7941.746.38316
    下载: 导出CSV
  • [1] 王国法. 加快煤矿智能化建设 推进煤炭行业高质量发展[J]. 中国煤炭,2021,47(1):2−10. DOI: 10.3969/j.issn.1006-530X.2021.01.002

    WANG Guofa. Speeding up intelligent construction of coal mine and promoting high−quality development of coal industry[J]. China Coal,2021,47(1):2−10. DOI: 10.3969/j.issn.1006-530X.2021.01.002

    [2] 王国法,任怀伟,赵国瑞,等. 煤矿智能化十大“痛点”解析及对策[J]. 工矿自动化,2021,47(6):1−11. DOI: 10.13272/j.issn.1671-251x.17808

    WANG Guofa,REN Huaiwei,ZHAO Guorui,et al. Analysis and countermeasures of ten“pain points”of intelligent coal mine[J]. Industry and Mine Automation,2021,47(6):1−11. DOI: 10.13272/j.issn.1671-251x.17808

    [3] 付燕,李瑶,严斌斌. 一种煤矿井下视频图像增强算法[J]. 工矿自动化,2018,44(7):80−83. DOI: 10.13272/j.issn.1671-251x.2017120014

    FU Yan,LI Yao,YAN Binbin. An underground video image enhancement algorithm[J]. Industry and Mine Automation,2018,44(7):80−83. DOI: 10.13272/j.issn.1671-251x.2017120014

    [4] 袁明道,谭彩,李阳,等. 基于图像融合和改进阈值的管道机器人探测图像增强方法[J]. 煤田地质与勘探,2019,47(4):178−185. DOI: 10.3969/j.issn.1001-1986.2019.04.027

    YUAN Mingdao,TAN Cai,LI Yang,et al. A pipeline robot detection image enhancement method based on image fusion and improved threshold[J]. Coal Geology & Exploration,2019,47(4):178−185. DOI: 10.3969/j.issn.1001-1986.2019.04.027

    [5] 智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190−2197. DOI: 10.13225/j.cnki.jccs.2017.0048

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for non–uniform illumination video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190−2197. DOI: 10.13225/j.cnki.jccs.2017.0048

    [6]

    GUO Xiaojie,LI Yu,LING Haibin. LIME:Low–light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982−993. DOI: 10.1109/TIP.2016.2639450

    [7] 董静薇,赵春丽,海博. 融合同态滤波和小波变换的图像去雾算法研究[J]. 哈尔滨理工大学学报,2019,24(1):66−70. DOI: 10.15938/j.jhust.2019.01.011

    DONG Jingwei,ZHAO Chunli,HAI Bo. Image research on image de–fog algorithm based on fusion homomorphic filtering and wavelet transform[J]. Journal of Harbin University of Science and Technology,2019,24(1):66−70. DOI: 10.15938/j.jhust.2019.01.011

    [8] 龚云, 颉昕宇. 一种改进同态滤波的井下图像增强算法[J/OL]. 煤炭科学技术, 2022: 1–8[2022-11-22]. DOI: 10.13199/j.cnki.cst.2021-0774.

    GONG Yun, XIE Xinyu. A downhole image enhancement algorithm based on improved homomorphic filtering[J/OL]. Coal Science and Technology, 2022: 1–8[2022-11-22]. DOI: 10.13199/j.cnki.cst.2021-0774.

    [9]

    LI Zhi,JIA Zhenhong,YANG Jie,et al. Low illumination video image enhancement[J]. IEEE Photonics Journal,2020,12(4):1−13.

    [10] 郭伶俐,贾振红. 基于大气散射模型的低照度视频增强算法[J]. 激光杂志,2022,43(6):105−110. DOI: 10.14016/j.cnki.jgzz.2022.06.105

    GUO Lingli,JIA Zhenhong. Low illumination video enhancement algorithm based on the atmospheric scattering model[J]. Laser Journal,2022,43(6):105−110. DOI: 10.14016/j.cnki.jgzz.2022.06.105

    [11] 蔡利梅,向秀华,李紫阳. 自适应HSV空间Retinex煤矿监控图像增强算法[J]. 电视技术,2017,41(4/5):11−15. DOI: 10.16280/j.videoe.2017.h4.003

    CAI Limei,XIANG Xiuhua,LI Ziyang. Adaptive Retinex algorithm at HSV space for coal mine monitoring image enhancement[J]. Video Engineering,2017,41(4/5):11−15. DOI: 10.16280/j.videoe.2017.h4.003

    [12]

    HE Kaiming,SUN Jian,TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341−2353. DOI: 10.1109/TPAMI.2010.168

    [13] 蔡秀梅,马今璐,吴成茂,等. 基于模糊同态滤波的彩色图像增强算法[J]. 计算机仿真,2020,37(6):342−346. DOI: 10.3969/j.issn.1006-9348.2020.06.070

    CAI Xiumei,MA Jinlu,WU Chengmao,et al. Color image enhancement algorithm based on fuzzy homomorphic filtering[J]. Computer Simulation,2020,37(6):342−346. DOI: 10.3969/j.issn.1006-9348.2020.06.070

    [14] 程德强,郑珍,姜海龙. 一种煤矿井下图像增强算法[J]. 工矿自动化,2015,41(12):31−34. DOI: 10.13272/j.issn.1671-251x.2015.12.009

    CHENG Deqiang,ZHENG Zhen,JIANG Hailong. An image enhancement algorithm for coal mine underground[J]. Industry and Mine Automation,2015,41(12):31−34. DOI: 10.13272/j.issn.1671-251x.2015.12.009

    [15] 汪凤林,周扬,叶绿,等. 基于机器视觉的飞轮齿圈缺陷和尺寸检测方法[J]. 中国测试,2020,46(5):31−38. DOI: 10.11857/j.issn.1674-5124.2020020005

    WANG Fenglin,ZHOU Yang,YE Lyu,et al. Method for fault defection and size measurement for flywheel ring gear based on machine vision[J]. China Measurement & Testing Technology,2020,46(5):31−38. DOI: 10.11857/j.issn.1674-5124.2020020005

    [16] 方建荣,苏畅,周晓方,等. 一种CMOS图像传感器信号处理自动白平衡算法[J]. 计算机工程,2015,41(9):245−250. DOI: 10.3969/j.issn.1000-3428.2015.09.045

    FANG Jianrong,SU Chang,ZHOU Xiaofang,et al. An algorithm of automatic white balance for CMOS image sensor signal processing[J]. Computer Engineering,2015,41(9):245−250. DOI: 10.3969/j.issn.1000-3428.2015.09.045

    [17]

    NAYAR S K, NARASIMHAN S G. Vision in bad weather[C]//Proceedings of the IEEE International Conference on Computer Vision, 1999: 820–827.

    [18]

    DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]//IEEE International Conference on Multimedia and Expo, 2011: 1–6.

    [19] 贾海鹏,张云泉,龙国平,等. 基于OpenCL的拉普拉斯图像增强算法优化研究[J]. 计算机科学,2012,39(5):271−277. DOI: 10.3969/j.issn.1002-137X.2012.05.065

    JIA Haipeng,ZHANG Yunquan,LONG Guoping,et al. Research on Laplace image enhancement algorithm optimization based on OpenCL[J]. Computer Science,2012,39(5):271−277. DOI: 10.3969/j.issn.1002-137X.2012.05.065

    [20] 王小东,冯筠,鲁定国,等. 基于先验知识的肝脏轮廓线提取算法研究[J]. 计算机应用研究,2014,31(1):281−284. DOI: 10.3969/j.issn.1001-3695.2014.01.066

    WANG Xiaodong,FENG Jun,LU Dingguo,et al. Liver contour extraction based on prior knowledge model[J]. Application Research of Computers,2014,31(1):281−284. DOI: 10.3969/j.issn.1001-3695.2014.01.066

    [21] 王媛彬,韦思雄,段誉,等. 基于自适应双通道先验的煤矿井下图像去雾算法[J]. 工矿自动化,2022,48(5):46−51. DOI: 10.13272/j.issn.1671-251x.2021110053

    WANG Yuanbin,WEI Sixiong,DUAN Yu,et al. Defogging algorithm of underground coal mine image based on adaptive dual−channel prior[J]. Industry and Mine Automation,2022,48(5):46−51. DOI: 10.13272/j.issn.1671-251x.2021110053

    [22] 张英俊,雷耀花,潘理虎. 基于暗原色先验的煤矿井下图像增强技术[J]. 工矿自动化,2015,41(3):80−83. DOI: 10.13272/j.issn.1671-251x.2015.03.020

    ZHANG Yingjun,LEI Yaohua,PAN Lihu. Enhancement technique of underground image based on dark channel prior[J]. Industry and Mine Automation,2015,41(3):80−83. DOI: 10.13272/j.issn.1671-251x.2015.03.020

  • 期刊类型引用(8)

    1. 张旭辉,解彦彬,杨文娟,张超,万继成,董征,王彦群,蒋杰,李龙. 煤矿井下采掘工作场景非均质图像去雾与增强技术. 煤田地质与勘探. 2025(01): 245-256 . 本站查看
    2. 张铁聪,陈华州,赵俊杰,王利景,贾冬冬. 基于数字孪生技术的煤矿掘进机自动截割方法研究. 中国煤炭. 2024(01): 93-100 . 百度学术
    3. 贾澎涛,靳路伟,王斌,郭风景,李娜. 采煤机截割部低照度图像的边缘检测技术. 煤田地质与勘探. 2024(04): 172-178 . 本站查看
    4. 张旭辉,王悦,杨文娟,陈鑫,张超,黄梦瑶,刘彦徽,杨骏豪. 基于改进最佳缝合线的矿井图像拼接方法. 工矿自动化. 2024(04): 9-17 . 百度学术
    5. 汪进超,韩增强,王益腾,王超,张国华. 基于像素空间信息的孔内低照度图像孔隙结构量化方法研究. 岩石力学与工程学报. 2024(S1): 3175-3186 . 百度学术
    6. 丁序海,张侯,陈录平,党国杰. 基于多频无线电坑透技术的煤矿地质综合勘探研究. 能源与环保. 2024(06): 82-87 . 百度学术
    7. 肖耀猛. 目标背景对比度优化下高煤尘低照度环境主动成像技术. 矿山机械. 2024(09): 60-65 . 百度学术
    8. 陶荣颖,王守军,李南,朱伟. 煤矿副井口全景智能识别技术的研究与应用. 内蒙古煤炭经济. 2024(22): 154-156 . 百度学术

    其他类型引用(2)

图(8)  /  表(1)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  16
  • PDF下载量:  53
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-09-12
  • 修回日期:  2022-11-19
  • 网络出版日期:  2023-01-11
  • 刊出日期:  2023-01-24

目录

    /

    返回文章
    返回