黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议

王双明, 魏江波, 宋世杰, 王生全, 孙涛

王双明,魏江波,宋世杰,等. 黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议[J]. 煤田地质与勘探,2022,50(12):1−11. DOI: 10.12363/issn.1001-1986.22.08.0601
引用本文: 王双明,魏江波,宋世杰,等. 黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议[J]. 煤田地质与勘探,2022,50(12):1−11. DOI: 10.12363/issn.1001-1986.22.08.0601
WANG Shuangming,WEI Jiangbo,SONG Shijie,et al. Influence of thick sandstone on development of overburden mining fissures in northern Shaanxi coal mining area of Yellow River Basin and suggestions on water-preserved coal mining[J]. Coal Geology & Exploration,2022,50(12):1−11. DOI: 10.12363/issn.1001-1986.22.08.0601
Citation: WANG Shuangming,WEI Jiangbo,SONG Shijie,et al. Influence of thick sandstone on development of overburden mining fissures in northern Shaanxi coal mining area of Yellow River Basin and suggestions on water-preserved coal mining[J]. Coal Geology & Exploration,2022,50(12):1−11. DOI: 10.12363/issn.1001-1986.22.08.0601

 

黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议

基金项目: 国家自然科学基金项目(41402308);榆林市科技计划重大项目(6130819001);陕西省煤炭绿色开发地质保障重点实验室重点基金项目(DZBZ2022Z-03)
详细信息
    作者简介:

    王双明,1955年生,男,陕西岐山人,中国工程院院士,从事煤田地质勘探及矿区环境保护等方面的研究.E-mail:sxmtwsm@163.com

  • 中图分类号: TD323

Influence of thick sandstone on development of overburden mining fissures in northern Shaanxi coal mining area of Yellow River Basin and suggestions on water-preserved coal mining

  • 摘要:

    煤炭开采活动导致的煤层顶板覆岩地质条件变化及采动裂隙发育是损害地下关键含水层的直接原因,也是造成矿区生态环境退化的根源。煤层顶板覆岩结构中发育的厚砂岩作为一种典型的地质条件,其对覆岩采动裂隙的发育规律具有重要的影响。为此,在分析研究区主采煤层赋存地质条件及其分布规律的基础上,选择陕北煤炭开采区曹家滩煤矿主采2−2煤层顶板覆岩为地质原型,采用FLAC3D数值模拟平台模拟分析了厚砂岩不同厚度和位置对覆岩采动裂隙发育形态和发育高度的影响,并以此提出了相应的“采煤保水”建议。结果表明:研究区2−2煤层顶板覆岩中厚砂岩平均厚度25 m,距2−2煤层平均间距76 m;厚砂岩距煤层30 m时,覆岩采动裂隙表现为“矩形—L形—马鞍形”的动态变化特征,距煤层70 m时表现为“L形—倒梯形—马鞍形”变化特征,距煤层大于95 m时全程表现为“马鞍形”特征;覆岩采动裂隙最大发育高度随厚砂岩层位的升高而先减小后增大;厚砂岩厚度H≥30 m、距煤层间距L>95 m,或H≥60 m、L>60 m时,可有效阻挡采动裂隙向上发育贯穿厚砂岩;在充分考虑厚砂岩对覆岩采动裂隙发育规律的影响,选择合适的空间位置和开采阶段进行合理的覆岩减损和保水防治,实现“边采边治、边采边护”的绿色开采模式。该研究成果可为黄河流域中游陕北煤矿区煤炭开采与生态环境保护协调发展提供理论指导。

    Abstract:

    The change of geological conditions of coal seam roof overburden and the development of mining fissures caused by coal mining activities are the direct causes of damage to the key underground aquifers, and also the root causes of ecological environment degradation in the mining area. As a typical geological condition, the thick sandstone developed in the overburden structure of the coal seam roof has an important impact on the development law of mining fissures in the overburden. Therefore, the influence of the thickness and location of different thick sandstones on the development morphology and height of overburden mining fractures was simulated and analyzed with the FLAC3D numerical simulation platform based on the analysis of the geological conditions and distribution rules of the main mining coal seams in the study area, taking the roof overburden of main mining coal seam 2−2 in Caojiatan Coal Mine of northern Shaanxi coal mining area as the geological prototype. Hence, suggestions were proposed for “water-preserved coal mining”. The results show that the thick sandstone in the roof overburden of coal seam 2−2 in the study area is 25 m thick on average, with an average spacing of 76 m from coal seam 2−2. Besides, the overburden mining fissures show the dynamic change in “Rectangle—L-shaped—Saddleback” characteristics for the thick sandstone 30 m away from the coal seam, “L-shaped—Inverted trapezoid—Saddleback” characteristics for the thick sandstone 70 m away from the coal seam, and “Saddleback” characteristics in the whole process for the thick sandstone 95 m away from the coal seam. The maximum development height of mining fissures in overburden decreases first and then increases with the increasing of thick sandstone horizon. The thickness of thick sandstone H≥30 m and the distance from the coal seam L>95 m, or H≥60 m and L>60 m could effectively prevent the upward development of mining fissures through the thick sandstone. In full consideration to the influence of thick sandstone on the development law of overburden mining fissures, reasonable measures were taken at appropriate spatial location and mining stage for overburden loss reduction and water conservation to realize the green mining mode of “mining while controlling, mining while protecting”. Generally, the research results could provide theoretical guidance for the coordinated development of coal mining and ecological environment protection in northern Shaanxi coal mining area of Yellow River Basin.

  • 图  1   研究区范围

    Fig.  1   Scope of study area

    图  2   研究区地质条件分布规律

    Fig.  2   Distribution law of geological conditions in the study area

    图  3   曹家滩井田地层柱状图

    Fig.  3   Stratigraphic histogram of Caojiatan Coal Mine

    图  4   曹家滩煤矿数值模型

    Fig.  4   Numerical model of Caojiatan Coal Mine

    图  5   覆岩破坏塑性区发育情况

    Fig.  5   Development situation of destructive plastic zone of overburden

    图  6   厚砂岩不同参数条件下覆岩采动裂隙发育高度变化曲线

    Fig.  6   Development height variation curve of mining fissures in overburden under different conditions

    图  7   厚砂岩位置与厚度对覆岩采动裂隙发育高度的影响

    Fig.  7   Influence of position and thickness of thick sandstone on development height of mining fissures in overburden

    图  8   厚砂岩位置与导水裂隙带的关系

    Fig.  8   Schematic diagram of the relationship between the location of thick sandstone and the water diversion fracture zone

    表  1   厚砂岩发育特征

    Table  1   Development characteristics of the thick sandstones

    钻孔号距煤层间距L/m厚度H/m岩性地层钻孔号距煤层间距L/m厚度H/m岩性地层
    JSD139.3220.84粉砂岩延安组SB2644.4319.43粉砂岩直罗组
    JSD296.5616.70粉砂岩直罗组SB463.4033.42粗砂岩直罗组
    JSD348.3012.10细砂岩延安组NBK1856.2518.25粉砂岩直罗组
    Y160.2634.70中砂岩直罗组NBK2652.1628.75中砂岩直罗组
    Y2112.7017.70粉砂岩直罗组K2-26.0929.60细砂岩延安组
    Y3114.7019.50粉砂岩直罗组K2-493.8239.54粉砂岩直罗组
    Y470.1017.40中砂岩直罗组K2-570.2524.21中砂岩直罗组
    Y5107.7030.40粉砂岩直罗组K2-6113.3028.62粉砂岩直罗组
    Y631.3014.90粉砂岩延安组K5-3204.1017.03粉砂岩直罗组
    Y762.9016.10中砂岩延安组K5-6164.0516.50粉砂岩直罗组
    H1128.9017.90中砂岩直罗组K5-981.0335.20粉砂岩直罗组
    H36.7827.80中砂岩延安组X3-1170.9126.49细砂岩直罗组
    H48.1833.64中砂岩延安组X3-2105.5547.70粉砂岩直罗组
    H517.7027.00细砂岩延安组X3-3100.4020.72细砂岩直罗组
    H617.5017.60中砂岩延安组XE780.2919.40粉砂岩直罗组
    H727.4020.40细砂岩延安组XE9100.7534.70粉砂岩直罗组
    H822.3016.80粉砂岩延安组XE21114.1526.18细砂岩直罗组
    B0766.7336.70粉砂岩直罗组#7136.2120.22粉砂岩直罗组
    B2179.5735.88细砂岩直罗组DL850.9722.90中砂岩直罗组
    B51114.0029.45粉砂岩直罗组51-2131.5622.00粉砂岩直罗组
    B5462.5916.50粗砂岩直罗组52-21.1232.27中砂岩延安组
    SB0163.7615.97粉砂岩直罗组52-497.8823.94中砂岩直罗组
    SB2341.0320.16中砂岩直罗组XB13108.1832.81中砂岩直罗组
    下载: 导出CSV

    表  2   数值模型中岩土层物理力学参数

    Table  2   Physical and mechanical parameters of rock and soil layers in the numerical model

    岩性弹性模量/104 MPa泊松比密度/(kg·m−3)抗拉强度/MPa黏聚力/MPa内摩擦角/(°)
    风积沙0.0020.3017200.030.0536.0
    黄土层0.0070.3018300.100.3035.1
    红土层0.0100.3118600.300.7035.0
    中砂岩0.6700.2426301.323.3033.0
    粉砂岩0.8000.2427001.202.8036.5
    细砂岩0.7000.2326501.152.5038.2
    2−2煤层0.1000.2813600.400.9033.0
    底板1.0000.2227002.004.0037.5
    下载: 导出CSV

    表  3   不同特征的厚砂岩模型方案

    Table  3   Model scheme for the thick sandstones with different characteristics

    编号H/mL/m编号H/mL/m
    M13030M95030
    M23070M105070
    M330115M1150115
    M430165M1250165
    M54030M136030
    M64070M146070
    M740115M1560115
    M840165M1660165
    下载: 导出CSV

    表  4   实测覆岩采动裂隙发育高度

    Table  4   Measured development height of mining fissures in overburden

    钻孔号采高/m导高/m裂采比
    DZ16.0136.122.7
    LD-111.0209.719.1
    LD-210.5214.020.4
    LD-410.5215.020.5
    下载: 导出CSV
  • [1] 王双明,孙强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8−15.

    WANG Shuangming,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15.

    [2] 张会军. 黄河流域煤炭富集区生态开采模式初探[J]. 煤炭科学技术,2021,49(12):233−242. DOI: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112029

    ZHANG Huijun. Preliminary study on ecological mining mode in coal–rich area of the Yellow River Basin[J]. Coal Science and Technology,2021,49(12):233−242. DOI: 10.3969/j.issn.0253-2336.2021.12.mtkxjs202112029

    [3] 彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221. DOI: 10.13225/j.cnki.jccs.2020.0444

    PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River Basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221. DOI: 10.13225/j.cnki.jccs.2020.0444

    [4] 王双明,杜麟,宋世杰. 黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J]. 煤炭学报,2021,46(9):3027−3038. DOI: 10.13225/j.cnki.jccs.st21.0207

    WANG Shuangming,DU Lin,SONG Shijie. Influence of mining ground fissures on soil erodibility in northern Shaanxi coal mining area of Yellow River Basin[J]. Journal of China Coal Society,2021,46(9):3027−3038. DOI: 10.13225/j.cnki.jccs.st21.0207

    [5] 申艳军,杨博涵,王双明,等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J]. 煤田地质与勘探,2022,50(6):104−117.

    SHEN Yanjun,YANG Bohan,WANG Shuangming,et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River[J]. Coal Geology & Exploration,2022,50(6):104−117.

    [6] 卞正富,于昊辰,雷少刚,等. 黄河流域煤炭资源开发战略研判与生态修复策略思考[J]. 煤炭学报,2021,46(5):1378−1391.

    BIAN Zhengfu,YU Haochen,LEI Shaogang,et al. Strategic consideration of exploitation on coal resources and its ecological restoration in the Yellow River Basin,China[J]. Journal of China Coal Society,2021,46(5):1378−1391.

    [7] 李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47.

    LI Quansheng,LI Xiaobin,XU Jialin,et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology,2022,50(1):28−47.

    [8] 赵高博,郭文兵,娄高中,等. 基于覆岩破坏传递的导水裂缝带发育高度研究[J]. 煤田地质与勘探,2019,47(2):144−150.

    ZHAO Gaobo,GUO Wenbing,LOU Gaozhong,et al. Study on development height of permeable fractured zone based on overburden failure transfer[J]. Coal Geology & Exploration,2019,47(2):144−150.

    [9]

    WANG Gang,WU Mengmeng,WANG Rui,et al. Height of the mining−induced fractured zone above a coal face[J]. Engineering Geology,2017,216:140−152. DOI: 10.1016/j.enggeo.2016.11.024

    [10] 张玉军,张志巍. 煤层采动覆岩破坏规律与控制技术研究进展[J]. 煤炭科学技术,2020,48(11):85−97.

    ZHANG Yujun,ZHANG Zhiwei. Research progress of mining overlying stratas failure law and control technology[J]. Coal Science and Technology,2020,48(11):85−97.

    [11] 黄万朋,高延法,王波,等. 覆岩组合结构下导水裂隙带演化规律与发育高度分析[J]. 采矿与安全工程学报,2017,34(2):330−335. DOI: 10.13545/j.cnki.jmse.2017.02.019

    HUANG Wanpeng,GAO Yanfa,WANG Bo,et al. Evolution rule and development height of permeable fractured zone under combined–strata structure[J]. Journal of Mining & Safety Engineering,2017,34(2):330−335. DOI: 10.13545/j.cnki.jmse.2017.02.019

    [12] 娄高中,谭毅. 基于PSO–BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探,2021,49(4):198−204. DOI: 10.3969/j.issn.1001-1986.2021.04.024

    LOU Gaozhong,TAN Yi. Prediction of the height of water flowing fractured zone based on PSO−BP neural network[J]. Coal Geology & Exploration,2021,49(4):198−204. DOI: 10.3969/j.issn.1001-1986.2021.04.024

    [13] 赵兵朝,刘樟荣,同超,等. 覆岩导水裂缝带高度与开采参数的关系研究[J]. 采矿与安全工程学报,2015,32(4):634−638.

    ZHAO Bingchao,LIU Zhangrong,TONG Chao,et al. Relation between height of water flowing fractured zone and mining parameters[J]. Journal of Mining & Safety Engineering,2015,32(4):634−638.

    [14] 许家林,王晓振,刘文涛,等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报,2009,28(2):380−385. DOI: 10.3321/j.issn:1000-6915.2009.02.023

    XU Jialin,WANG Xiaozhen,LIU Wentao,et al. Effects of primary key stratum location on height of water flowing fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):380−385. DOI: 10.3321/j.issn:1000-6915.2009.02.023

    [15] 许家林,朱卫兵,王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报,2012,37(5):762−769. DOI: 10.13225/j.cnki.jccs.2012.05.002

    XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water–conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762−769. DOI: 10.13225/j.cnki.jccs.2012.05.002

    [16] 曹祖宝,王庆涛. 基于覆岩结构效应的导水裂隙带发育特征[J]. 煤田地质与勘探,2020,48(3):145−151. DOI: 10.3969/j.issn.1001-1986.2020.03.021

    CAO Zubao,WANG Qingtao. Development characteristics of water conducted fracture zone based on overburden structural effect[J]. Coal Geology & Exploration,2020,48(3):145−151. DOI: 10.3969/j.issn.1001-1986.2020.03.021

    [17] 鞠金峰,马祥,赵富强,等. 东胜煤田导水裂隙发育及其分区特征研究[J]. 煤炭科学技术,2022,50(2):202−212.

    JU Jinfeng,MA Xiang,ZHAO Fuqiang,et al. Development and zoning characteristics of water−conducted fractures in Dongsheng Coalfield[J]. Coal Science and Technology,2022,50(2):202−212.

    [18] 王晓振,许家林,韩红凯,等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报,2019,44(12):3740−3749.

    WANG Xiaozhen,XU Jialin,HAN Hongkai,et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society,2019,44(12):3740−3749.

    [19] 李江华,王东昊,黎灵,等. 不同覆岩类型高强度采动裂隙发育特征对比研究[J]. 煤炭科学技术,2021,49(10):9−15.

    LI Jianghua,WANG Donghao,LI Ling,et al. Comparative study on development characteristics of high–intensive mining fissures in different overburden types[J]. Coal Science and Technology,2021,49(10):9−15.

    [20] 潘瑞凯,曹树刚,李勇,等. 浅埋近距离双厚煤层开采覆岩裂隙发育规律[J]. 煤炭学报,2018,43(8):2261−2268.

    PAN Ruikai,CAO Shugang,LI Yong,et al. Development of overburden fractures for shallow double thick seams mining[J]. Journal of China Coal Society,2018,43(8):2261−2268.

    [21] 张玉军,申晨辉,张志巍,等. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律[J]. 煤炭科学技术,2022,50(5):38−48.

    ZHANG Yujun,SHEN Chenhui,ZHANG Zhiwei,et al. Regional distribution law of water−conducting fractured zone height in high−strength mining of thick and extra−thick coal seams in China[J]. Coal Science and Technology,2022,50(5):38−48.

    [22]

    CHI Mingbo,ZHANG Dongsheng,LIU Honglin,et al. Simulation analysis of water resource damage feature and development degree of mining–induced fracture at ecologically fragile mining area[J]. Environmental Earth Sciences,2019,78:88. DOI: 10.1007/s12665-018-8039-5

    [23] 王双明, 黄庆享, 范立民, 等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京: 科学出版社, 2010.
    [24] 王双明,黄庆享,范立民,等. 生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报,2010,35(1):7−14.

    WANG Shuangming,HUANG Qingxiang,FAN Limin,et al. Study on overburden aquclude and water protection mining regionazation in the ecological fragile mining area[J]. Journal of China Coal Society,2010,35(1):7−14.

    [25] 赵春虎,靳德武,王皓,等. 榆神矿区中深煤层开采覆岩损伤变形与含水层失水模型构建[J]. 煤炭学报,2019,44(7):2227−2235.

    ZHAO Chunhu,JIN Dewu,WANG Hao,et al. Construction and application of overburden damage and aquifer water loss model in medium−deep buried coal seam mining in Yushen mining area[J]. Journal of China Coal Society,2019,44(7):2227−2235.

    [26] 宋世杰,王双明,赵晓光,等. 基于覆岩层状结构特征的开采沉陷分层传递预计方法[J]. 煤炭学报,2018,43(增刊1):87−95.

    SONG Shijie,WANG Shuangming,ZHAO Xiaoguang,et al. Stratification transfer method of the mining subsidence based on the characteristics of layered structure in coal overburden[J]. Journal of China Coal Society,2018,43(Sup.1):87−95.

图(8)  /  表(4)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  41
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-09-13
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-12-24

目录

    /

    返回文章
    返回