Fault diagnosis of hydraulic power system for coal mine tunnel drilling rig based on T-S fuzzy fault tree
-
摘要:
针对煤矿坑道钻机液压动力系统复杂化带来系统中各元件间逻辑关系模糊、失效形式多态性及故障概率获取困难等问题,克服传统故障树在复杂机电液装备故障诊断分析中的局限性,实现及时准确获取设备故障信息,发现故障原因并采取措施,提出一种基于T-S模糊故障树煤矿坑道钻机液压动力系统的故障诊断方法。以ZDY25000LK型钻机液压动力系统为研究对象,对系统的层次结构进行分析,以T-S模糊故障树描述系统的性能变量,进行分析建树。根据质心距离相似度的度量法对专家评估的底事件模糊概率进行修正,求解顶事件在不同故障程度时发生概率的梯形模糊数。通过T-S概率重要度分析,确定各底事件的重要度排序,指出在不同故障程度时液压动力系统的薄弱环节。结果表明:部件级到系统级事件发生严重故障的概率呈递增趋势,系统中多个部件发生轻微故障时,系统发生严重故障的可能性较大。各事件的故障程度对上级事件发生的贡献度不同,根据重要度排序锁定故障位置并判断故障原因。当液压动力系统出现严重故障时,根据重要度分析结果,应优先排查安全阀工作情况、油泵内部磨损情况及内部串油情况。该方法实现在不同故障程度时系统中薄弱环节的快速定位,在鄂尔多斯淮河能源唐家会煤矿的工程试验中得到验证,为提高煤矿坑道钻机的可靠性提供了参考依据。
Abstract:In view of the problems of fuzzy logic relation between the elements of the system, the polymorphism of fault mode, and the difficulty in obtaining the fault probability as a result of the complication of the hydraulic power system for coal mine tunnel drilling rig, a fault diagnosis method of hydraulic power system for coal mine tunnel drilling rig based on Takagi-Sugeno (T-S) fuzzy tree was proposed to overcome the limitations of traditional fault tree in fault diagnosis and analysis of the complex electromechanical hydraulic equipment. The method could timely and accurately obtain the fault information of equipment, and to find out the reasons and to take appropriate measures. Herein, research was conducted based on the hydraulic power system of ZDY25000LK drilling rig, with the hierarchical structure of the system analyzed and the performance variation described by the T-S fuzzy fault tree for analysis and tree establishment. Moreover, the fuzzy probability of the bottom events evaluated by experts was corrected according to the measurement method for centroid distance similarity, and thereby the trapezoidal fuzzy number of the probability of top event occurring in different fault conditions was solved. Furthermore, the importance of the bottom events were ranked based on the importance analysis of T-S probability, with the weak link of hydraulic power system in different fault conditions pointed out. The results show that the probability of serious faults is increasing for the events from component level to system level, and serious faults are more possible to occur if minor faults occur in multiple components of the system. As the fault degree of each event has different contribution to the occurrence of superior events, the fault should be located according to the importance ranking, and further the causes of fault could be judged. When the hydraulic power system has a serious fault, the working condition of safety valve, the internal wear condition of the oil pump and the internal oil running condition should be investigated first according to the importance analysis results. Therefore, the weak link of the system could be located rapidly with this method in various degrees of fault, which was verified in the engineering test of Tangjiahui Coal Mine of Huaihe Energy in Ordos, thus providing a reference basis for improving the reliability of coal mine tunnel drilling rig.
-
-
表 1 T-S模糊门规则
Table 1 Rules of T-S fuzzy gate
规则 x1 x2 ··· xi y1 y2 ··· $y^{k_j} $ r $x_1^{k_1}$ $x_2^{k_2}$ ··· $x_i^{k_i}$ Pr(y1) Pr(y2) ··· Pr($y^{k_j} $) 表 2 T-S模糊故障树各事件明细
Table 2 T-S fuzzy fault tree event details
事件 异常描述 事件 异常描述 T 液压动力系统压力异常 x4 吸油过滤器堵塞 y1 液压系统内漏 x5 回油滤油器堵塞 y2 柱塞泵不排油 x6 空气滤清器阻塞 y3 安全阀溢流异常 x7 油黏度过高 y4 过滤器故障 x8 电机转向错误 y5 电机泵组故障 x9 油泵磨损过度 x1 内部串油 x10 安全阀开启压力低 x2 管道漏气 x11 安全阀阀芯卡死 x3 密封损坏 x12 密封圈损坏 表 3 T-S模糊门4规则
Table 3 Rules for T-S fuzzy gate 4
规则 x10 x11 x12 y3 0 0.5 1 1 0 0 0 P1($y_3^0 $) P1($y_3^{0.5} $) P1($y_3^1 $) 2 0 0 0.5 P2($y_3^0 $) P2($y_3^{0.5} $) P2($y_3^1 $) 3 0 0 1 P3($y_3^0 $) P3($y_3^{0.5} $) P3($y_3^1 $) $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 27 1 1 1 P27($y_3^0 $) P27($y_3^{0.5} $) P27($y_3^1 $) 表 4 T-S模糊门4规则
Table 4 Rules for T-S fuzzy gate 4
规则 x10 x11 x12 y3 0 0.5 1 1 0 0 0 1 0 0 2 0 0 0.5 0.3 0.5 0.2 3 0 0 1 0 0 1 4 0 0.5 0 0.1 0.6 0.3 5 0 0.5 0.5 0 0.5 0.5 6 0 0.5 1 0 0 1 7 0 1 0 0 0 1 8 0 1 0.5 0 0 1 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 27 1 1 1 0 0 1 表 5 T-S模糊门6规则
Table 5 Rules for T-S fuzzy gate 6
规则 x8 x9 y5 0 0.5 1 1 0 0 1 0 0 2 0 0.5 0.3 0.2 0.5 3 0 1 0 0 1 4 0.5 0 0.4 0.2 0.4 5 0.5 0.5 0.2 0.2 0.6 6 0.5 1 0 0 1 7 1 0 0 0 1 8 1 0.5 0 0 1 9 1 1 0 0 1 表 6 T-S模糊门4底事件隶属度及执行度
Table 6 Degree of membership and execution of T-S fuzzy gate 4
规则r μF $\beta _r^{'} $ x10 x11 x12 1 1 1 2/3 2/3 2 1 1 1/3 1/3 3 1 1 0 0 4 1 0 2/3 0 5 1 0 1/3 0 6 1 0 0 0 7 1 0 2/3 0 8 1 0 1/3 0 $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ 27 0 0 0 0 表 7 各底事件模糊故障率
Table 7 Fuzzy failure rate of each bottom even
事件 模糊概率/10−5 x1 2.116 2.459 2.803 3.126 x2 0.985 1.033 1.375 1.421 x3 2.048 2.355 2.721 3.132 x4 3.354 3.554 3.845 4.127 x5 1.051 1.344 1.648 1.986 x6 1.482 1.733 1.958 2.146 x7 1.309 1.485 1.736 1.924 x8 0.446 0.616 0.811 0.894 x9 4.673 4.904 5.413 5.862 x10 0.667 0.713 0.841 0.898 x11 0.232 0.326 0.417 0.522 x12 1.931 2.279 2.588 2.806 表 8 各中间事件模糊故障率
Table 8 Fuzzy failure rate of each intermediate event
事件 模糊概率/10−5 0.5 1 y1 (1.538, 1.714, 2.062, 2.304) (6.807, 7.744, 9.112, 10.153) y2 (2.803, 3.173, 3.634, 4.409) (16.056, 17.606, 19.802, 21.645) y3 (1.305, 1.493, 1.797, 1.986) (3.486, 4.086, 4.741, 5.213) y4 (2.354, 2.757, 3.193, 3.653) (6.664, 7.372, 8.172, 8.933) y5 (1.024, 1.104, 1.245, 1.351) (7.634, 8.218, 9.255, 10.045) 表 9 各底事件T-S模糊概率重要度
Table 9 T-S fuzzy probability importance of each bottom event
事件 $I_{0.5}^{ {P_v} }({x_i})$ $I_1^{ {P_v} }({x_i})$ x1 0.030 0.710 x2 0.045 0.615 x3 0.060 0.670 x4 0.063 0.668 x5 0.113 0.443 x6 0.050 0.615 x7 0.150 0.590 x8 0.020 0.752 x9 0.120 0.702 x10 0.045 0.680 x11 0.090 0.710 x12 0.075 0.650 -
[1] 石智军,姚克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1−34. SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1−34. DOI: 10.13199/j.cnki.cst.2020.04.001 SHI Zhijun, YAO Ke, YAO Ningping, et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology, 2020, 48(4): 1–34. DOI: 10.13199/j.cnki.cst.2020.04.001
[2] 姚克,田宏亮,姚宁平,等. 煤矿井下钻探装备技术现状及展望[J]. 煤田地质与勘探,2019,47(1):1−5. YAO Ke,TIAN Hongliang,YAO Ningping,et al. Present situation and prospect of drilling equipment technology in coal mine[J]. Coal Geology & Exploration,2019,47(1):1−5. YAO Ke, TIAN Hongliang, YAO Ningping, et al. Present situation and prospect of drilling equipment technology in coal mine[J]. Coal Geology & Exploration, 2019, 47(1): 1–5.
[3] 张幼振,范涛,阚志涛,等. 煤矿巷道掘进超前钻探技术应用与发展[J]. 煤田地质与勘探,2021,49(5):286−293. ZHANG Youzhen,FAN Tao,KAN Zhitao,et al. Application and development of advanced drilling technology for coal mine roadway heading[J]. Coal Geology & Exploration,2021,49(5):286−293. ZHANG Youzhen, FAN Tao, KAN Zhitao, et al. Application and development of advanced drilling technology for coal mine roadway heading[J]. Coal Geology & Exploration, 2021, 49(5): 286–293.
[4] 吴远方. 基于RS–SVM数据融合的全液压钻机智能故障诊断研究[D]. 成都: 成都理工大学, 2016. WU Yuanfang. Research on fault diagnosis of all hydraulic drilling machine based on RS−SVM data fusion[D]. Chengdu: Chengdu University of Technology, 2016.
[5] 朱冠霖,王兆强,王异凡,等. 基于神经网络和证据融合的液压泵故障诊断研究[J]. 机电工程,2020,37(12):1498−1503. ZHU Guanlin,WANG Zhaoqiang,WANG Yifan,et al. Hydraulic pump fault diagnosis based on neural network and evidence fusion[J]. Journal of Mechanical & Electrical Engineering,2020,37(12):1498−1503. ZHU Guanlin, WANG Zhaoqiang, WANG Yifan, et al. Hydraulic pump fault diagnosis based on neural network and evidence fusion[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(12): 1498–1503.
[6] 余发山,康洪. 基于GA优化BP神经网络的液压钻机故障诊断[J]. 电子测量技术,2016,39(2):134−137. YU Fashan,KANG Hong. Fault diagnosis of hydraulic drilling rig based on Genetic Algorithm optimized BP neural network[J]. Electronic Measurement Technology,2016,39(2):134−137. DOI: 10.19651/j.cnki.emt.2016.02.032 YU Fashan, KANG Hong. Fault diagnosis of hydraulic drilling rig based on Genetic Algorithm optimized BP neural network[J]. Electronic Measurement Technology, 2016, 39(2): 134–137. DOI: 10.19651/j.cnki.emt.2016.02.032
[7] 樊红卫,张旭辉,曹现刚,等. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J]. 振动与冲击,2020,39(24):194−204. FAN Hongwei,ZHANG Xuhui,CAO Xiangang,et al. Research status and prospect of fault diagnosis of China’s coal mine machines under background of intelligent mine[J]. Journal of Vibration and Shock,2020,39(24):194−204. FAN Hongwei, ZHANG Xuhui, CAO Xiangang, et al. Research status and prospect of fault diagnosis of China’s coal mine machines under background of intelligent mine[J]. Journal of Vibration and Shock, 2020, 39(24): 194–204.
[8] 赵雪锋. 煤矿井下自动化钻机液压泵站设计[J]. 煤矿机械,2021,42(5):8−10. ZHAO Xuefeng. Design of hydraulic pump station for automatic drilling rig in underground coal mine[J]. Coal Mine Machinery,2021,42(5):8−10. DOI: 10.13436/j.mkjx.202105004 ZHAO Xuefeng. Design of hydraulic pump station for automatic drilling rig in underground coal mine[J]. Coal Mine Machinery, 2021, 42(5): 8–10. DOI: 10.13436/j.mkjx.202105004
[9] QI Jinli,HU Xianwei,GAO Xuan. Quantitative risk analysis of subsea pipeline and riser:An experts’ assessment approach using fuzzy fault tree[J]. International Journal of Reliability and Safety,2014,8(1):33−50. DOI: 10.1504/IJRS.2014.062639
[10] LAVASANI S M,ZENDEGANI A,CELIK M. An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry[J]. Process Safety and Environmental Protection,2015,93:75−88. DOI: 10.1016/j.psep.2014.05.001
[11] 姚成玉,饶乐庆,陈东宁,等. T–S动态故障树分析方法[J]. 机械工程学报,2019,55(16):17−32. YAO Chengyu,RAO Leqing,CHEN Dongning,et al. T–S dynamic fault tree analysis method[J]. Journal of Mechanical Engineering,2019,55(16):17−32. DOI: 10.3901/JME.2019.16.017 YAO Chengyu, RAO Leqing, CHEN Dongning, et al. T–S dynamic fault tree analysis method[J]. Journal of Mechanical Engineering, 2019, 55(16): 17–32. DOI: 10.3901/JME.2019.16.017
[12] 徐廷学,王凤芹,李志强. 基于T–S模糊故障树方法的惯性导航系统可靠性评估[J]. 测控技术,2022,41(2):49−56. XU Tingxue,WANG Fengqin,LI Zhiqiang. Reliability assessment method of inertial navigation system based on T−S fuzzy fault tree[J]. Measurement & Control Technology,2022,41(2):49−56. XU Tingxue, WANG Fengqin, LI Zhiqiang. Reliability assessment method of inertial navigation system based on T–S fuzzy fault tree[J]. Measurement & Control Technology, 2022, 41(2): 49–56.
[13] 陈紫起,薛冬新. 基于T–S模糊故障树的某柴油机缸套可靠性分析[J]. 合肥工业大学学报(自然科学版),2021,44(7):875−880. CHEN Ziqi,XUE Dongxin. Reliability analysis of a diesel engine cylinder liner based on T–S fuzzy fault tree[J]. Journal of Hefei University of Technology (Natural Science),2021,44(7):875−880. CHEN Ziqi, XUE Dongxin. Reliability analysis of a diesel engine cylinder liner based on T–S fuzzy fault tree[J]. Journal of Hefei University of Technology(Natural Science), 2021, 44(7): 875–880.
[14] 张明哲. 液压钻机信号采集与故障诊断系统的研究[D]. 西安: 西安科技大学, 2013. ZHANG Mingzhe. Research on signal acquisition and fault diagnosis system for hydraulic drill rig[D]. Xi’an: Xi’an University of Science and Technology, 2013.
[15] 刘旭辉. 全液压钻机盲源分离故障诊断技术研究[D]. 成都: 成都理工大学, 2016. LIU Xuhui. Research on fault diagnosis of the control system of hydraulic drilling machine based on blind source separation[D]. Chengdu: Chengdu University of Technology, 2016.
[16] 马斌,董洪波,李晓鹏,等. 煤矿全液压钻机智能诊断系统研究[J]. 煤矿机械,2016,37(7):61−63. MA Bin,DONG Hongbo,LI Xiaopeng,et al. Intelligent diagnosis system of fully hydraulic drilling rig in coal mine[J]. Coal Mine Machinery,2016,37(7):61−63. DOI: 10.13436/j.mkjx.201607022 MA Bin, DONG Hongbo, LI Xiaopeng, et al. Intelligent diagnosis system of fully hydraulic drilling rig in coal mine[J]. Coal Mine Machinery, 2016, 37(7): 61–63. DOI: 10.13436/j.mkjx.201607022
[17] 罗鹏平,王龙鹏,赵良,等. 基于电信号融合的煤矿井下坑道钻机故障预警[J]. 西安航空学院学报,2018,36(3):65−68. LUO Pengping,WANG Longpeng,ZHAO Liang,et al. Fault early warning of coal mine hydraulic drilling rig based on the fusion of electrical signals[J]. Journal of Xi’an Aeronautical University,2018,36(3):65−68. DOI: 10.3969/j.issn.1008-9233.2018.03.013 LUO Pengping, WANG Longpeng, ZHAO Liang, et al. Fault early warning of coal mine hydraulic drilling rig based on the fusion of electrical signals[J]. Journal of Xi’an Aeronautical University, 2018, 36(3): 65–68. DOI: 10.3969/j.issn.1008-9233.2018.03.013
[18] 高立龙,李九林,于雨,等. 基于T–S模糊故障树的液压系统故障诊断研究[J]. 液压气动与密封,2021,21(6):76−80. GAO Lilong,LI Jiulin,YU Yu,et al. Research on fault diagnosis of hydraulic system based on T–S fuzzy fault tree[J]. Hydraulics Pneumatics & Seals,2021,21(6):76−80. DOI: 10.3969/j.issn.1008-0813.2021.06.021 GAO Lilong, LI Jiulin, YU Yu, et al. Research on fault diagnosis of hydraulic system based on T–S fuzzy fault tree[J]. Hydraulics Pneumatics & Seals, 2021, 21(6): 76–80. DOI: 10.3969/j.issn.1008-0813.2021.06.021
[19] 刘勇,罗德林,石翠,等. 基于T–S模糊故障树的多态导航系统性能可靠性[J]. 北京航空航天大学学报,2021,47(2):240−246. LIU Yong,LUO Delin,SHI Cui,et al. Performance reliability of multi–state navigation system based on T−S fuzzy fault tree[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(2):240−246. LIU Yong, LUO Delin, SHI Cui, et al. Performance reliability of multi–state navigation system based on T–S fuzzy fault tree[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 240–246.
[20] 孙利娜,黄宁,仵伟强,等. 基于T–S模糊故障树的多态系统性能可靠性[J]. 机械工程学报,2016,52(10):191−198. SUN Lina,HUANG Ning,WU Weiqiang,et al. Performance reliability of polymorphic systems by fuzzy fault tree based on T–S model[J]. Journal of Mechanical Engineering,2016,52(10):191−198. DOI: 10.3901/JME.2016.10.191 SUN Lina, HUANG Ning, WU Weiqiang, et al. Performance reliability of polymorphic systems by fuzzy fault tree based on T–S model[J]. Journal of Mechanical Engineering, 2016, 52(10): 191–198. DOI: 10.3901/JME.2016.10.191
[21] 吴勇,陶军. 基于T–S模型的装载机液压系统动态故障树分析[J]. 液压与气动,2020,27(11):171−176. WU Yong,TAO Jun. Dynamic fault tree analysis based on T–S model for loader hydraulic system[J]. Chinese Hydraulics & Pneumatics,2020,27(11):171−176. DOI: 10.11832/j.issn.1000-4858.2020.11.027 WU Yong, TAO Jun. Dynamic fault tree analysis based on T–S model for loader hydraulic system[J]. Chinese Hydraulics & Pneumatics, 2020, 27(11): 171–176. DOI: 10.11832/j.issn.1000-4858.2020.11.027
[22] 成永超,穆连运. 基于T–S模糊故障树的改进型前盖开闭装置故障研究[J]. 数字海洋与水下攻防,2022,5(2):172−177. CHENG Yongchao,MU Lianyun. Fault research of improved front cover opening and closing device based on T–S fuzzy fault tree[J]. Digital Ocean & Underwater Warfare,2022,5(2):172−177. CHENG Yongchao, MU Lianyun. Fault research of improved front cover opening and closing device based on T–S fuzzy fault tree[J]. Digital Ocean & Underwater Warfare, 2022, 5(2): 172–177.
[23] 姚成玉,张荧驿,陈东宁,等. T–S模糊重要度分析方法研究[J]. 机械工程学报,2011,47(12):163−169. YAO Chengyu,ZHANG Yingyi,CHEN Dongning,et al. Research on T−S fuzzy importance analysis methods[J]. Journal of Mechanical Engineering,2011,47(12):163−169. DOI: 10.3901/JME.2011.12.163 YAO Chengyu, ZHANG Yingyi, CHEN Dongning, et al. Research on T-S fuzzy importance analysis methods[J]. Journal of Mechanical Engineering, 2011, 47(12): 163–169. DOI: 10.3901/JME.2011.12.163
[24] 刘英,肖杨亮,张根保,等. 基于梯形模糊数的数控磨床砂轮架系统故障树分析[J]. 工程设计学报,2018,25(4):394−401. LIU Ying,XIAO Yangliang,ZHANG Genbao,et al. Fault tree analysis of grinding wheel rack system of CNC grinder based on trapezoidal fuzzy number[J]. Chinese Journal of Engineering Design,2018,25(4):394−401. LIU Ying, XIAO Yangliang, ZHANG Genbao, et al. Fault tree analysis of grinding wheel rack system of CNC grinder based on trapezoidal fuzzy number[J]. Chinese Journal of Engineering Design, 2018, 25(4): 394–401.