试论矿山生态修复的地质成土

胡振琪, 张子璇, 孙煌

胡振琪,张子璇,孙煌. 试论矿山生态修复的地质成土[J]. 煤田地质与勘探,2022,50(12):21−29. DOI: 10.12363/issn.1001-1986.22.06.0463
引用本文: 胡振琪,张子璇,孙煌. 试论矿山生态修复的地质成土[J]. 煤田地质与勘探,2022,50(12):21−29. DOI: 10.12363/issn.1001-1986.22.06.0463
HU Zhenqi,ZHANG Zixuan,SUN Huang. Geological soil formation for ecological restoration of mining areas and its case study[J]. Coal Geology & Exploration,2022,50(12):21−29. DOI: 10.12363/issn.1001-1986.22.06.0463
Citation: HU Zhenqi,ZHANG Zixuan,SUN Huang. Geological soil formation for ecological restoration of mining areas and its case study[J]. Coal Geology & Exploration,2022,50(12):21−29. DOI: 10.12363/issn.1001-1986.22.06.0463

 

试论矿山生态修复的地质成土

基金项目: 国家重点研发计划项目(2020YFC1806505);国家自然科学基金项目(41771542);国家高技术研究发展计划(863计划)项目(2003AA322040)
详细信息
    作者简介:

    胡振琪,1963年生,男,安徽五河人,博士,教授,博士生导师,研究方向为矿山土地复垦与生态修复. E-mail:huzq1963@ 163.com

  • 中图分类号: TD88

Geological soil formation for ecological restoration of mining areas and its case study

  • 摘要:

    土壤是植物生长的重要基质,是矿山生态修复成败的关键。针对大多数矿山生态修复所面临缺少土壤的现状和土壤漫长的地质成土过程的现实,试图在阐述自然地质成土原理的基础上,探讨矿山生态修复中的地质成土(简称矿山地质成土)的概念与方法。自然地质成土是地质大循环和生物小循环历经漫长时期将“岩石”变成“土壤”的过程,其中风化、黏化、有机质积聚以及元素的交换和迁移是重要的自然地质成土过程。矿山地质成土是指仿自然地质成土过程,通过筛选矿区可利用的成土母质或土壤材料,采用物理、化学和生物措施促进土壤快速发育和熟化并在短期内形成期望土壤功能、达到自我可持续发育状态的过程,其实质为人工造土。方法包含矿山地质成土的需求分析、成土材料的筛选、土壤材料的组配和生物熟化4步骤,还阐述了矿山地质成土与矿山复垦土壤重构的关系。以内蒙古某露天煤矿生态修复为例,详细讨论基于原始地层材料的露天矿表土的矿山地质成土过程,筛选出原始第3层土壤作为新表土的最优土壤材料组配与生物熟化方法;以矿山固体废弃物为土壤材料,介绍利用自然地质成土原理所构造的煤基生物土的方法;同时对黄河泥沙基矿山地质成土在西部矿区生态修复中的应用给予了展望。

    Abstract:

    Soil is an important substrate of plant growth, as well as the key for successful ecological restoration of mine. In view of the status of insufficient soil for most of ecological restoration of mine and the reality of a very long process of geological soil formation, the concept and method of geological soil formation for ecological restoration of mine (Mine-GSF for short) were discussed on the basis of description on the principle of natural geological soil formation. Natural geologic soil formation is the process of turning “rock” into “soil” through a long period of macro-geological cycle and biological cycle, including the important links of weathering, claying, accumulation of organic matter, and the exchange and migration of elements. Mine-GSF is the process of simulating the natural geological soil formation by promoting the rapid development and maturation of soil with the physical, chemical and biological measures through screening the available soil-forming parent materials or soil materials at the mine site, and thus forming the desired soil functions in a short period of time to achieve a self-sustainable development state. It is exactly a process of artificial soil formation. Specifically, the method consists of four steps: demand analysis of Mine-GSF, screening of parent material for soil formation, composition of soil materials and its biological maturation. In addition, the relationship between Mine-GSF and soil reconstruction for mine reclamation was described. Moreover, the geological soil formation process for the topsoil of open pit mine based on the original soil material of geological stratums is discussed in detail, and the optimal soil material composition and biological maturation method with the third layer of original soil as topsoil was determined based on the ecological restoration of an open pit coal mine in Inner Mongolia. The method of coal-based biological soil constructed on the principle of geological soil formation is introduced using the solid waste of mine as the soil material. Meanwhile, prospect is made for the application of geologic soil formation with the Yellow River sediment as soil material in the ecological restoration of western mining areas.

  • 图  1   自然地质成土过程及其产物

    Fig.  1   Process of natural geological soil formation and its products

    图  2   矿山地质成土过程

    Fig.  2   The process of geological soil formation

    图  3   研究区地质柱状图

    Fig.  3   Geological bar chart of the study area

    图  4   紫花苜蓿生物量(地上部干重)

    Fig.  4   Biomass of Medicago sativa (aerial dry weight)

    图  5   不同处理紫花苜蓿生物量

    Fig.  5   Biomass of Medicago sativa in different treatments

    图  6   不同处理接种菌根后的植株生物量

    Fig.  6   Plant biomass after mycorrhizal inoculation in different treatments

    图  7   煤基生物土野外场地植物长势

    Fig.  7   Plant growth in the field of coal-based biological soil

    表  1   露天矿各层不同基质粒度组成含量

    Table  1   Particle size distribution of different soil materials in open-pit mine layers

    样品组不同粒径范围的质量分数/%质地
    细黏粒粗黏粒细粉粒中粉粒粗粉粒细砂粒
    <0.001 mm0.001~0.002 mm0.002~0.005 mm0.005~0.010 mm0.010~0.05 mm0.05~0.25 mm
    CK2.209.1713.7712.0258.234.61粉砂土
    Ⅱ124.0338.2922.667.287.740粉黏土
    Ⅱ259.1435.613.841.120.290黏土
    Ⅲ195.354.630.02000重黏土
    Ⅲ299.850.150000重黏土
    下载: 导出CSV

    表  2   试验设计

    Table  2   Experimental design (g·kg−1)

    处理组蛭石玉米秸秆硝基腐殖酸
    T110100.5
    T210301.0
    T310501.5
    T430101.5
    T530300.5
    T630501.0
    T750101.0
    T850301.5
    T950500.5
    下载: 导出CSV
  • [1] 胡振琪,赵艳玲. 矿山生态修复面临的主要问题及解决策略[J]. 中国煤炭,2021,47(9):2−7. DOI: 10.19880/j.cnki.ccm.2021.09.001

    HU Zhenqi,ZHAO Yanling. Main problems in ecological restoration of mines and their solutions[J]. China Coal,2021,47(9):2−7. DOI: 10.19880/j.cnki.ccm.2021.09.001

    [2]

    National Research Council. Surface mining: Soil, coal, and society[M]. Washington D. C. : National Academy Press, 1981.

    [3] 黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.
    [4] 陈余道, 蒋亚萍. 环境地质学[M]. 北京: 冶金工业出版社, 2011.
    [5] 方谦,洪汉烈,赵璐璐,等. 风化成土过程中自生矿物的气候指示意义[J]. 地球科学,2018,43(3):753−769.

    FANG Qian,HONG Hanlie,ZHAO Lulu,et al. Climatic implication of authigenic minerals formed during pedogenic weathering processes[J]. Earth Science,2018,43(3):753−769.

    [6] 崔晓阳. 土壤资源学[M]. 北京: 中国林业出版社, 2007.
    [7] 陈孝杨,张凌霄,陈敏,等. 煤矸石组分与表土质地对充填重构土壤导气率的影响[J]. 水土保持学报,2018,32(5):91−97. DOI: 10.13870/j.cnki.stbcxb.2018.05.015

    CHEN Xiaoyang,ZHANG Lingxiao,CHEN Min,et al. The effects of coal gangue composition and surface soil texture on the air permeability in reconstruction soil filled with coal gangue[J]. Journal of Soil and Water Conservation,2018,32(5):91−97. DOI: 10.13870/j.cnki.stbcxb.2018.05.015

    [8] 胡振琪. 矿山复垦土壤重构的理论与方法[J]. 煤炭学报,2022,47(7):2499−2515.

    HU Zhenqi. Theory and method of soil reconstruction of reclaimed mined land[J]. Journal of China Coal Society,2022,47(7):2499−2515.

    [9] 李新举,胡振琪,李晶,等. 采煤塌陷地复垦土壤质量研究进展[J]. 农业工程学报,2007,23(6):276−280. DOI: 10.3321/j.issn:1002-6819.2007.06.056

    LI Xinju,HU Zhenqi,LI Jing,et al. Research progress of reclaimed soil quality in mining subsidence area[J]. Transactions of the Chinese Society of Agricultural Engineering,2007,23(6):276−280. DOI: 10.3321/j.issn:1002-6819.2007.06.056

    [10] 刘益良,苏幼坡,殷尧,等. 膨润土改性胶凝材料的研究进展[J]. 材料导报,2021,35(5):5040−5052. DOI: 10.11896/cldb.19090070

    LIU Yiliang,SU Youpo,YIN Yao,et al. Research progress of bentonite modified cementitious materials[J]. Materials Reports,2021,35(5):5040−5052. DOI: 10.11896/cldb.19090070

    [11] 王培俊,胡振琪,邵芳,等. 黄河泥沙作为采煤沉陷地充填复垦材料的可行性分析[J]. 煤炭学报,2014,39(6):1133−1139.

    WANG Peijun,HU Zhenqi,SHAO Fang,et al. Feasibility analysis of Yellow River sediment used as the filling reclamation material of mining subsidence land[J]. Journal of China Coal Society,2014,39(6):1133−1139.

    [12] 毕银丽,彭苏萍,杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报,2021,46(5):1355−1364.

    BI Yinli,PENG Suping,DU Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi−arid areas of western China[J]. Journal of China Coal Society,2021,46(5):1355−1364.

    [13] 马力,罗强,武璟,等. 露天矿外排土场粒径及土层厚度对表土渗透规律影响[J]. 太原理工大学学报,2021,52(6):953−959.

    MA Li,LUO Qiang,WU Jing,et al. Influence law of particle size and soil thickness on the permeability of topsoil of open–pit dump[J]. Journal of Taiyuan University of Technology,2021,52(6):953−959.

    [14] 程蓉,廖祥文,舒荣波,等. 利用硅酸盐细菌制备煤矸石矿物肥料[J]. 矿产综合利用,2017(6):115−118. DOI: 10.3969/j.issn.1000-6532.2017.06.025

    CHENG Rong,LIAO Xiangwen,SHU Rongbo,et al. Study on the preparation of gangue mineral fertilizers by silicate–dissolving bacterial strains[J]. Multipurpose Utilization of Mineral Resources,2017(6):115−118. DOI: 10.3969/j.issn.1000-6532.2017.06.025

    [15] 王顺,陈敏,陈孝杨,等. 煤矸石充填重构土壤水分再分布与剖面气热变化试验研究[J]. 水土保持学报,2017,31(4):93−98. DOI: 10.13870/j.cnki.stbcxb.2017.04.016

    WANG Shun,CHEN Min,CHEN Xiaoyang,et al. Water redistribution and gas–heat diffusion of reconstruction soil filled with gangue[J]. Journal of Soil and Water Conservation,2017,31(4):93−98. DOI: 10.13870/j.cnki.stbcxb.2017.04.016

    [16]

    KOTELNIKOVA A D,ROGOVA O B,KARPUKHINA E A,et al. Assessment of the structure,composition,and agrochemical properties of fly ash and ash−and−slug waste from coal−fired power plants for their possible use as soil ameliorants[J]. Journal of Cleaner Production,2022,333:130088. DOI: 10.1016/j.jclepro.2021.130088

    [17] 武瑞平,李华,曹鹏. 风化煤施用对复垦土壤理化性质酶活性及植被恢复的影响研究[J]. 农业环境科学学报,2009,28(9):1855−1861. DOI: 10.3321/j.issn:1672-2043.2009.09.014

    WU Ruiping,LI Hua,CAO Peng. Amelioration of weathered coal on soil physical,chemical properties and enzyme activities with vegetation restoration[J]. Journal of Agro–Environment Science,2009,28(9):1855−1861. DOI: 10.3321/j.issn:1672-2043.2009.09.014

    [18] 林杉,位蓓蕾,胡振琪,等. 紫花苜蓿苗期对腐殖酸改良露天矿表土替代材料的响应[J]. 河南农业科学,2013,42(8):48−52. DOI: 10.3969/j.issn.1004-3268.2013.08.012

    LIN Shan,WEI Beilei,HU Zhenqi,et al. Response of seedling stage Alfalfa (Medicago sativa L. ) to topsoil substituted material improved by humic acid in open pit mine area[J]. Journal of Henan Agricultural Sciences,2013,42(8):48−52. DOI: 10.3969/j.issn.1004-3268.2013.08.012

    [19] 位蓓蕾,陈玉玖,胡振琪,等. 紫花苜蓿对蛭石改良某煤矿表土替代材料的响应[J]. 金属矿山,2013(5):131−134. DOI: 10.3969/j.issn.1001-1250.2013.05.035

    WEI Beilei,CHEN Yujiu,HU Zhenqi,et al. Response of purple Alfalfa for Vermiculite as material substitute modifying the surface soil of an open–pit mine[J]. Metal Mine,2013(5):131−134. DOI: 10.3969/j.issn.1001-1250.2013.05.035

    [20] 胡振琪,位蓓蕾,林衫,等. 露天矿上覆岩土层中表土替代材料的筛选[J]. 农业工程学报,2013,29(19):209−214. DOI: 10.3969/j.issn.1002-6819.2013.19.026

    HU Zhenqi,WEI Beilei,LIN Shan,et al. Selection of topsoil alternatives from overburden of surface coal mines[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(19):209−214. DOI: 10.3969/j.issn.1002-6819.2013.19.026

    [21] 位蓓蕾. 露天矿表土替代材料的筛选与改良研究[D]. 北京: 中国矿业大学(北京), 2014.

    WEI Beilei. Study on screening and improvement of surface soil substitute materials in open−pit mine[D]. Beijing: China University of Mining & Technology (Beijing), 2014.

    [22] 胡振琪,赵艳玲. 黄河流域矿区生态环境与黄河泥沙协同治理原理与技术方法[J]. 煤炭学报,2022,47(1):438−448.

    HU Zhenqi,ZHAO Yanling. Principle and technology of coordinated control of eco–environment of mining areas and river sediments in Yellow River watershed[J]. Journal of China Coal Society,2022,47(1):438−448.

    [23] 邵芳,胡振琪,王培俊,等. 基于黄河泥沙充填复垦采煤沉陷地覆土材料的优选[J]. 农业工程学报,2016,32(增刊2):352−358.

    SHAO Fang,HU Zhenqi,WANG Peijun,et al. Selection of alternative soil for filling reclamation with Yellow River sediment in coal–mining subsidence areas[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(Sup.2):352−358.

图(7)  /  表(2)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  22
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-09-14
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2022-12-24

目录

    /

    返回文章
    返回