地面救援车载钻机的研制

凡东, 邹祖杰, 王瑞泽, 鲁飞飞, 刘祺, 王贺剑

凡东,邹祖杰,王瑞泽,等. 地面救援车载钻机的研制[J]. 煤田地质与勘探,2022,50(11):35−44. DOI: 10.12363/issn.1001-1986.22.05.0418
引用本文: 凡东,邹祖杰,王瑞泽,等. 地面救援车载钻机的研制[J]. 煤田地质与勘探,2022,50(11):35−44. DOI: 10.12363/issn.1001-1986.22.05.0418
FAN Dong,ZOU Zujie,WANG Ruize,et al. Development of rescue truck-mounted drilling rig in ground emergency[J]. Coal Geology & Exploration,2022,50(11):35−44. DOI: 10.12363/issn.1001-1986.22.05.0418
Citation: FAN Dong,ZOU Zujie,WANG Ruize,et al. Development of rescue truck-mounted drilling rig in ground emergency[J]. Coal Geology & Exploration,2022,50(11):35−44. DOI: 10.12363/issn.1001-1986.22.05.0418

 

地面救援车载钻机的研制

基金项目: 国家重点研发计划课题(2018YFC0808203)
详细信息
    作者简介:

    凡东,1980年生,男,湖北枣阳人,博士研究生,研究员,从事钻探技术与装备的研究与推广工作. E-mail:fandong@cctegxian.com

    通讯作者:

    邹祖杰,1988年生,男,湖北孝感人,博士研究生,副研究员,从事钻探技术与装备的研究与推广工作.E-mail:zouzujie@cctegxian.com

  • 中图分类号: TD41;TD231

Development of rescue truck-mounted drilling rig in ground emergency

  • 摘要:

    矿山发生事故导致人员被困井下时,通过地面钻孔进行救援是一种有效的手段。救援车载钻机可适应多种钻进工艺,具有地层适应性广、机动性高、事故处理能力强等优点,是矿山事故救援的理想机型。鉴于国产车载钻机在生命保障孔及大直径救援井施工中存在的不足,研制了ZMK5550TZJF50/120型车载钻机,开发了适应多种工艺的大能力动力头,采用大通孔主轴、大通径冲管、气举反循环气管安设接口等设计,转速转矩调节范围宽,可满足多种钻进工艺,实测最大转矩51350 N·m,具备施工大直径钻孔和处理事故能力;设计了油缸−钢丝绳伸缩式桅杆给进装置,实现长工作行程14 m,短运输尺寸13.6 m,实测最大起拔力1205 kN,具备孔内事故强力解卡的能力。将动力及电液控制系统集成至动力泵站,为车载钻机、钻杆输送系统、井口平台提供动力源和控制源,分体式布局解决了钻进能力提升与整机质量尺寸间的矛盾,满足道路运输要求,能充分发挥钻机的高机动性。为提高起下钻效率、机械化程度,减少工人数量并降低劳动强度,研制了钻具自动加卸系统,通过HG2-01型换杆装置、液压提引装置、自动拧卸装置协同作业,实现起下钻具效率小于3 min/根。钻机在宁夏梅花井矿完成了直径830 mm、深度624.1 m救援井的施工,平均机械钻速3.1 m/h,透巷井深654.1 m,具备600 m深度的钻孔救援能力,为我国矿山灾害救援提供了装备保障。

    Abstract:

    Ground drilling is an effective means to rescue the person trapped underground in case of accident in a mine. The rescue truck-mounted drilling rig is an ideal model for mine accident rescue due to its adaptability to a variety of drilling technologies and the advantages of wide formation adaptability, high mobility and strong accident handling capacity. In view of the shortcomings of domestic truck-mounted drilling rig in the construction of life support hole and large-diameter relief well, ZMK5550TZJF50/120 truck-mounted drilling rig was developed. Specifically, the large capacity power head adaptable to various technologies was developed, adopting the design of installation interfaces for large hole spindle, large diameter punching pipe, and gas lift reverse circulation pipe. In such case, the speed torque could be adjusted in a wide range, a variety of drilling technologies could be adapted, the measured maximum torque is 51 350 N·m, and hence the construction of large diameter drilling and accident handling capacity could be realized. Meanwhile, a telescopic mast feeding device of oil cylinder and steel wire rope was designed, which could achieve a long working stroke of 14 m, a short transport size of 13.6 m and a measured maximum pulling force of 1 205 kN, and has the capability of strong unsticking in the hole accident. Besides, the power and electro-hydraulic control system was integrated into the power pump station to provide power and control sources for the truck-mounted drilling rig, drill pipe conveying system and wellhead platform. In addition, the split layout resolved the contradiction between the improvement of drilling capacity and the weight and size of the whole machine, satisfied the requirements of road transportation, and gave full play to the high mobility of the drilling rig. In order to improve the efficiency of tripping and the degree of mechanization, reduce the number of workers and mitigate the labor intensity, the automatic loading/unloading system of drilling rig was developed, realizing the tripping efficiency less than 3 min/rig with the joint operation of HG2-01 rod changing device, hydraulic lifting device and automatic unscrewing device. The drilling rig completed the construction of a relief well with a diameter of 830 mm and a depth of 624.1 m in Ningxia Meihuajing Mine, with an average mechanical drilling speed of 3.1 m/h and a depth of 654.1 m. It is verified with a drilling and rescue capability within a depth of 600 m, which provides equipment support for the accident rescue of mine in China.

  • 图  1   圣何塞救援中的T130XD钻机

    Fig.  1   T130XD drilling rig in the SAN Jose rescue

    图  2   平邑救援中的RB-T90钻机

    Fig.  2   RB-T90 drilling rig in Pingyi rescue

    图  3   源江山救援中的ZMK5530TZJ60钻机

    Fig.  3   ZMK5530TZJ60 drilling rig in Yuanjiang mountain rescue

    图  4   ZMK5550TZJF50/120救援钻机

    1—给进装置;2—动力头;3—拧卸装置;4—井口平台;5—钻具加卸系统;6—操纵室;7—专用底盘;8—动力泵站

    Fig.  4   ZMK5550TZJF50/120 rescue power head

    图  5   动力头结构

    1—托板;2—冲管总成;3—回转器;4—旋转头

    Fig.  5   The structure of the power head

    图  6   动力头箱体有限元分析

    Fig.  6   Finited element analysis of the power head

    图  7   给进装置

    1—天车轮组;2—给进油缸;3—给进机身;4—调角浮动托板;5—丝绳张紧轮

    Fig.  7   The feeder device

    图  8   给进装置应变及应力

    Fig.  8   The stress and strain nephogram of the feeder device

    图  9   专用底盘

    1—转向驱动桥;2—随动承重桥;3—驱动桥;4—前支腿;5—后支腿

    Fig.  9   Special chassis

    图  10   钻机液压系统原理

    1—液压泵;2—给进系统;3—回转系统

    Fig.  10   Principle of the drilling rig hydraulic system

    图  11   HG2-01型换杆装置

    1—滑动小车;2—机身;3—底座

    Fig.  11   HG2-01 type drill pipe changing device

    图  12   液压提引装置

    1—液压缸;2—内衬;3—活门;4—连杆机构

    Fig.  12   Hydraulic lifting device

    图  13   自动拧卸装置

    1—旋扣钳;2—冲扣钳;3—大滑车总成

    Fig.  13   Automatic screw unloading device

    图  14   提升力检测

    Fig.  14   Lifting force detection

    图  15   回转转矩检测

    Fig.  15   Rotary torque detection

    图  16   大直径救援井井身结构

    Fig.  16   Large diameter rescue well shaft structure

    图  17   工业性试验现场

    Fig.  17   Industrial test site

    表  1   ZMK5550TZJF50/120救援钻机

    Table  1   Parameters of ZMK5550TZJF50/120 rescue drilling rig

    功能单元主要性能参数
    钻机
    整机
    整机运输尺寸/(m×m×m)13.29×2.55×4.00
    整机质量/t55
    最大开口直径/mm920
    给进
    装置
    最大提升力/kN1 200
    最大给进力/kN180
    给进行程/m14
    动力头最大转矩/(kN·m)50
    最大转速/(r·min−1)90
    最大翘起角度/(°)70
    动力
    泵站
    额定功率/kW597
    额定压力/MPa34
    钻具加
    卸系统
    适用钻具规格/mm72~254
    最大仰角/(°)22
    下载: 导出CSV

    表  2   自动拧卸装置设计参数

    Table  2   Automatic unscrew device design parameters

    主要性能参数
    夹持钻具规格/mm72~254
    最大上扣转矩/(kN·m)80
    最大冲扣转矩/(kN·m)100
    旋扣速度/(r·min−1)80
    操作方式手动、全自动
    整体水平移动行程/mm1000
    旋扣钳水平移动行程/mm500
    垂直移动行程/mm500
    下载: 导出CSV

    表  3   示范工程现场地层

    Table  3   Stratum of demonstration project site

    地层岩性底界深度
    /m
    地层平均厚度/m
    新生界第四系粉砂及卵石层9.5059.09
    中生界侏罗系中统安定组灰褐、紫红、紫褐色粉砂岩和泥岩为主,
    夹灰白、灰绿色中−细粒砂岩
    209.2670.01
    直罗组上部主要为细粒砂岩,灰色、褐色粉砂岩,
    夹粗、中粒砂岩。中下部以七里镇砂岩为主
    423.3374.89
    623.3346.02
    延安组中、粗粒长石石英砂岩、细粒砂岩;深灰、
    灰黑色粉砂岩、泥岩及煤等组成
    654.00
    (未穿)
    37.44
    下载: 导出CSV
  • [1] 王志坚. 矿山钻孔救援技术的研究与务实思考[J]. 中国安全生产科学技术,2011,7(1):5−9.

    WANG Zhijian. Considering and researching of drilling technology in mine rescue[J]. Journal of Safety Science and Technology,2011,7(1):5−9.

    [2] 邹祖杰,凡东,刘庆修,等. 矿山地面大直径钻孔救援提升装备研制[J]. 煤炭科学技术,2017,45(12):160−165.

    ZOU Zujie,FAN Dong,LIU Qingxiu,et al. Research and development on rescue lifting equipment of large diameter borehole at mine ground[J]. Coal Science and Technology,2017,45(12):160−165.

    [3] 杨涛,杜兵建. 山东平邑石膏矿矿难大口径救援钻孔施工技术[J]. 探矿工程(岩土钻掘工程),2017,44(5):19−23.

    YANG Tao,DU Bingjian. Construction technology of large diameter rescue borehole in Pingyi Gypsum Mine disaster of Shandong[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(5):19−23.

    [4] 李亮. 平邑石膏矿坍塌事故救援成功后的几点思考[J]. 探矿工程(岩土钻掘工程),2016,43(10):281−286.

    LI Liang. Discussion of Pingyi Gypsum Mine collapse accident rescue[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2016,43(10):281−286.

    [5] 田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29−33.

    TIAN Hongliang,ZHANG Yang,HAO Shijun,et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29−33.

    [6] 渠伟,李新年,张堃,等. 大口径救援生命通道的施工工艺及钻具配置[J]. 中国安全生产科学技术,2016,12(增刊1):44−48.

    QU Wei,LI Xinnian,ZHANG Kun,et al. Construction technology and drilling tools configuration of large diameter life rescue channel[J]. Journal of Safety Science and Technology,2016,12(Sup.1):44−48.

    [7] 高加索. 煤层气钻机的性能探析和发展方向[J]. 石油机械,2010,38(6):84−87.

    GAO Jiasuo. Performance analysis and direction of development of coal–bed methane drilling rig[J]. China Petroleum Machinery,2010,38(6):84−87.

    [8] 曹东风. 宝峨RB50型车载钻机施工工艺探讨[J]. 中国煤炭地质,2009,21(7):69−70. DOI: 10.3969/j.issn.1674-1803.2009.07.019

    CAO Dongfeng. Probe into Bau’er RB50 truck–mounted drilling rig operational techniques[J]. Coal Geology of China,2009,21(7):69−70. DOI: 10.3969/j.issn.1674-1803.2009.07.019

    [9] 石智军,赵江鹏,陆鸿涛,等. 煤矿区大直径垂直定向孔快速钻进关键技术与装备[J]. 煤炭科学技术,2016,44(9):13−18.

    SHI Zhijun,ZHAO Jiangpeng,LU Hongtao,et al. Key technology and equipment of rapid drilling for large diameter vertical directional borehole in mine area[J]. Coal Science and Technology,2016,44(9):13−18.

    [10] 凡东,常江华,王贺剑,等. ZMK5530TZJ100型车载钻机的研制[J]. 煤炭科学技术,2017,45(3):111−115.

    FAN Dong,CHANG Jianghua,WANG Hejian,et al. Research and development on ZMK5530TZJ100 mode truck−mounted drilling rig[J]. Coal Science and Technology,2017,45(3):111−115.

    [11] 高加索. MZJ10煤层气钻机的研制[J]. 石油机械,2010,38(12):60−62.

    GAO Jiasuo. Research on model MZJ10 coal−bed gas drilling rig[J]. China Petroleum Machinery,2010,38(12):60−62.

    [12] 中煤科工集团西安研究院有限公司. 一种适用于气举反循环钻进的救援车载钻机动力头: CN201911366319. 5[P]. 2020-04-14.
    [13]

    MUROHY, ROBIN R, JEFFERY P, et al. Preliminary report: Rescue robot at Crandall Canyon, Utah, mine disaster[C]//IEEE International Conference on Robotics and Automation, 2008: 2205–2206.

    [14]

    DAVISON C, MASSAGUER D, PARADIS, et al. Practical experiences in enabling and ensuring quality sensing in emergency response applications[C]//2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops, 2010: 388–393.

    [15] 刘祺. 煤层气车载钻机给进装置强度分析[J]. 中州煤炭,2016(7):106−109.

    LIU Qi. Strength analysis on feeding device for CBM truck–mounted rig[J]. Zhongzhou Coal,2016(7):106−109.

    [16] 凡东. 150T 煤层气车载钻机给进装置研究及液压驱动系统设计[D]. 西安: 长安大学, 2017.

    FAN Dong. Research on feeding device and design of driving system for 150T CBM drilling rig[D]. Xi’an: Chang’an University, 2017.

    [17] 凡东,殷新胜,常江华,等. ZDY1000G 型全液压坑道钻机的设计[J]. 煤田地质与勘探,2011,39(1):78−80. DOI: 10.3969/j.issn.1001-1986.2011.01.019

    FAN Dong,YIN Xinsheng,CHANG Jianghua,et al. The design of ZDY1000G type all hydraulic tunnel drilling rig[J]. Coal Geology & Exploration,2011,39(1):78−80. DOI: 10.3969/j.issn.1001-1986.2011.01.019

    [18] 高宏亮. 车载钻机在地质勘探工程中的应用[J]. 地质装备,2009,10(2):37−40. DOI: 10.3969/j.issn.1009-282X.2009.02.021

    GAO Hongliang. The application of mobile rig in geological exploration[J]. Equipment for Geotechnical Engineering,2009,10(2):37−40. DOI: 10.3969/j.issn.1009-282X.2009.02.021

    [19] 凡东. ZMK5530TZJ100型车载钻机的试验研究[J]. 煤田地质与勘探,2018,46(2):201−204. DOI: 10.3969/j.issn.1001-1986.2018.02.031

    FAN Dong. Test research on ZMK5530TZJ100 truck–mounted drilling rig[J]. Coal Geology & Exploration,2018,46(2):201−204. DOI: 10.3969/j.issn.1001-1986.2018.02.031

    [20] 许刘万,曹福德,葛和旺. 中国水文水井钻探技术及装备应用现状[J]. 探矿工程(岩土钻掘工程),2007,34(1):33−38.

    XU Liuwan,CAO Fude,GE Hewang. Current situation of application of drilling technology and equipment for hydrological well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2007,34(1):33−38.

    [21] 邓昀,袁辉,董新旺,等. TD2000/600型液压顶驱式钻机设计及应用[J]. 煤炭科学技术,2013,41(增刊1):250−253.

    DENG Yun,YUAN Hui,DONG Xinwang,et al. Design and application of TD2000/600 top driving hydraulic drilling rig[J]. Coal Science and Technology,2013,41(Sup.1):250−253.

  • 期刊类型引用(12)

    1. 高原,徐厚倜,戴刚刚,黄小军,张小华,刘梓萱. 浙东南石平川钼矿区构造特征及控矿机制. 中国地质调查. 2024(03): 42-50 . 百度学术
    2. 刘亢,宁树正,曹代勇,吴国强,王路,林中月,王安民. 煤系石墨矿产资源评价方法初探. 煤田地质与勘探. 2023(04): 1-10 . 本站查看
    3. 祝雯霞 ,亢建华 ,张丹仙 . 石墨资源成矿规律与浮选技术研究现状. 矿物学报. 2023(03): 397-415 . 百度学术
    4. 束振宇,徐祥,魏迎春,王安民,王路,刘志飞,陈高建,曹代勇. 不同类型接触变质煤大分子结构差异性研究. 煤炭科学技术. 2023(06): 147-157 . 百度学术
    5. 赵训林,王路,李靖,朱文卿,莫佳峰,肖金成. 湖南鲁塘矿区煤系石墨空间分布特征与深部找矿方向. 中国煤炭地质. 2023(08): 11-16 . 百度学术
    6. 高明,李杰,王文进,张敏,潘幸. 遥感测绘技术在地质勘查中的应用研究. 能源与环保. 2023(10): 116-122 . 百度学术
    7. 李靖,王路,刘永旺,栾进华,张瑞刚,张森,王安民. 川渝地区煤的石墨化潜势研究. 煤田地质与勘探. 2022(02): 9-16 . 本站查看
    8. 曹代勇,刘志飞,王安民,王路,丁正云,李阳. 构造物理化学条件对煤变质作用的控制. 地学前缘. 2022(01): 439-448 . 百度学术
    9. Yong LI,Songqi PAN,Shuzheng NING,Longyi SHAO,Zhenhua JING,Zhuangsen WANG. Coal measure metallogeny: Metallogenic system and implication for resource and environment. Science China(Earth Sciences). 2022(07): 1211-1228 . 必应学术
    10. 李勇,潘松圻,宁树正,邵龙义,荆振华,王壮森. 煤系成矿学内涵与发展——兼论煤系成矿系统及其资源环境效应. 中国科学:地球科学. 2022(10): 1948-1965 . 百度学术
    11. 宋昱,姜波,王猛,李凤丽,程国玺,侯晨亮,冯光俊,全方凯. 煤缩合芳环应力响应:对无烟煤石墨化的启示. 煤炭学报. 2022(12): 4336-4351 . 百度学术
    12. 李瑞青,唐跃刚,郇璇,樊江涛,车启立. 煤基石墨烯原料与制备技术研究进展. 煤田地质与勘探. 2020(05): 1-15 . 本站查看

    其他类型引用(7)

图(17)  /  表(3)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  17
  • PDF下载量:  43
  • 被引次数: 19
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-09-19
  • 网络出版日期:  2022-11-09
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回