Key technologies and equipment of quickly and safely building life support and rescue channel in mine disaster
-
摘要:
矿山发生重大灾害事故导致井筒、巷道破坏,人员被困井下时,通过安全、高效地构建救援通道是最有效的救援方式。救援通道包括井下、地面2种形式,井下具备施工条件时,构建穿过坍塌段的大直径救援通道,是最直接的方式;井下不具备施工条件或易发生次生灾害时,则需先在地面快速、精准钻进小直径搜救孔,确定井下被困人员位置及身体状况,并及时输送给养,再构建大直径救援井,采用专用救援提升装备保障被困人员升井脱困。研究涵盖机械工程、钻井工程、电气工程、软件工程、流体力学、岩土力学、动力学、先进控制技术等多学科多领域,将理论分析、数值模拟、实验研究、型式试验、工程示范相结合,以“救援通道构建装备研制—生命保障通道构建技术开发—大直径救援通道构建技术开发—地面提升救援装备开发—技术与装备集成及工程试验”为主线,开发钻孔救援关键技术与装备。研制了3套应急救援集成装备,ZMK5550TZJF50/120型救援车载钻机最大提升力1 200 kN、最大转矩50 000 N·m,开发了钻机与配套机具的一体化集中控制系统,单根起下钻效率小于3 min/根;XZJ5240JQZ30型救援提升车开发了多传感器信息融合的通信监测控制系统,提升系统最大救援深度848 m;ZDG1500型井下大直径顶管机直径1 630 mm,最大顶推力8 541.2 kN。开发了复杂地层生命保障孔快速、精准钻进技术,地面大直径救援井精准、安全、高效钻进及透巷技术,井下大断面救援通道顶管快速施工技术3项矿山应急救援通道构建技术。在宁夏宁煤梅花井矿开展了国内首次生命保障孔及大直径救援井施工、救援提升的集成研究和工程示范,完成井径215.9 mm、井深670.5 m生命保障孔,用时46.83 h,井底水平位移偏移0.27 m,满足72 h黄金救援时间内成孔要求;完成井径830 mm、井深654.1 m救援井,井底水平位移0.19 m,介质溃入井下约7.5 m³,并在救援井内成功进行了救援提升技术与装备试验。在广东省基础工程集团有限公司碎石场开展了顶管钻进工程模拟坍塌条件下的试验,施工长度102.5 m,日进尺43.92 m,顶进误差0.35 m。相关成果在湖南源江山煤矿、山东栖霞金矿、新疆丰源煤矿等5次矿山灾害应急救援中进行了应用。开发的3项救援通道施工技术及3套救援装备,构成了具有自主知识产权的矿山井上井下联合救援技术与装备体系,可满足600 m深度的矿山应急救援需求,为我国矿山灾害救援提供技术装备支撑。
Abstract:In case that persons are trapped underground as a result of shaft and roadway damage due to a major disaster accident in a mine, the most effective way of rescue is to construct the rescue channel in a safely and efficient manner. The rescue channel is divided into the underground and ground types. Building a large diameter rescue channel through the collapsed section is the most direct way if underground construction conditions are available. However, if no underground construction conditions are available or it is prone to secondary disasters, it is necessary to drill small diameter rescue holes on the ground quickly and accurately to determine the location and physical condition of the trapped people underground, and deliver the supplies in time. Then, a large diameter relief well should be constructed to ensure that the trapped people can be pulled out of the well with the special rescue equipment. The research covers multiple disciplines in many fields such as mechanical engineering, drilling engineering, electrical engineering, software engineering, hydromechanics, geotechnical mechanics, dynamics, and advanced control technology. Meanwhile, the key technologies and equipment for drilling rescue were developed with the theoretical analysis, numerical simulation, experimental research, type test and engineering demonstration in combination, focusing on the main line of development of construction equipment for rescue channel, development of construction technologies for life support channel, development of construction technologies for large-diameter rescue channel, development of ground lifting rescue equipment, and integration and engineering test of technologies and equipment. Three sets of emergency rescue integrated equipment have been developed. ZMK5550TZJF50/120 rescue truck-mounted drilling rig has the maximum lifting force of 1 200 kN and the maximum torque of 50 000 N·m. The integrated centralized control system of drilling rig and supporting tools was developed, with the single tripping efficiency of 3 min/rig. In terms of XZJ5240JQZ30 rescue lifting vehicle, the communication monitoring and control system based on multi-sensor information fusion was developed, and the maximum rescue depth of the lifting system is 848 m. ZDG1500 downhole large-diameter pipe jacking machine has a diameter of 1 630 mm and the maximum jacking force of 8 541.2 kN. In addition, three construction technologies of mine emergency rescue channel were developed, including the fast and accurate drilling technology of life support hole in complex formation, the accurate, safe and efficient drilling and roadway penetration technology of large-diameter ground relief well, and the rapid construction technology of pipe jacking in underground large-section rescue channel. The first integrated research and engineering tests for the construction of life support hole and large-diameter relief well, as well as rescue lifting, were carried out in the Meihuajing Mine of Ningmei Coal in Ningxia Province. Specifically, a life support hole at a diameter of 215.9 mm and a depth of 670.5 m was constructed in 46.83 h, with a downhole horizontal displacement offset of 0.27 m, satisfying the drilling requirements of 72-hour “golden window” for rescue. A relief well at a diameter of 830 mm and a depth of 654.1 m was drilled with a downhole horizontal displacement of 0.19 m and the media collapsed into the hole about 7.5 m3. Besides, the technology and equipment for rescue lifting was successfully tested in the relief well. Moreover, the test of simulated collapse of pipe jacking drilling project was carried out in the crushing field of Guangdong Foundation Engineering Group Co., Ltd., with a construction length of 102.5 m, a daily footage of 43.92 m and a jacking error of 0.35 m. Further, the relevant results were applied in the emergency rescue of five mine disasters, including Hunan Yuanjiangshan Coal Mine, Shandong Qixiashan Gold Mine and Xinjiang Fengyuan Coal Mine. In general, the three construction technologies of rescue channel and the three sets of rescue equipment developed together form the combined construction technology and equipment system underground and aboveground of mine with independent intelligent property rights, capable of meeting the needs of mine emergency rescue at a depth of 600 m, thus providing technical and equipment support for emergency rescue of mine in China.
-
-
表 1 ZMK5550TZJF50/120救援车载钻机及配套机具参数
Table 1 Parameters of ZMK5550TZJF50/120 rescue truck-mounted drilling rig and supporting tools
功能单元 主要性能 参数 钻机主机 最大提升力/kN 1 200 最大给进力/kN 180 最大开口直径/mm 920 井架伸出高度/m 20.6 井架缩回高度/m 13.6 整机运输尺寸/(m×m×m) 13.29×2.55×4.00 整机质量/t 55 动力系统 功率/kW 597 转速/(r·min−1) 2 100 液压系统压力 动力头系统压力/MPa 34 快速升降系统压力/MPa 34 辅助液压系统压力/MPa 28 回转系统 最大输出转矩/kN·m 50 最大输出转速/(r·min−1) 90 钻具加卸系统 钻具长度/m 6~10 适用钻具规格/mm 72~254 最大仰角/(°) 22 遥控距离/m 30 表 2 钻进技术优选评价体系
Table 2 Drilling technology preferential evaluation system
钻进工艺 提高机械
钻速能力防斜纠斜
能力漏失地层
钻进能力处理地层
出水能力控制地层
坍塌能力钻进硬地层
能力钻进深度
能力高压射流钻进 空气潜孔锤跟管钻进 空气潜孔锤 空气泡沫钻进 泥浆复合钻进(配MWD) 表 3 钻进技术优选体系
Table 3 Priuing technology preferential system
钻进工艺 一般性地层 松散地层 破碎地层 水敏性地层 漏失地层 不涌水或涌水量小 涌水量大 高压射流钻进 空气潜孔锤跟管钻进 空气潜孔锤 空气泡沫钻进 泥浆复合钻进(配MWD) 注:表中绿色为优先推荐,黄色为一般推荐,红色为不推荐。 表 4 技术与装备对比分析
Table 4 Comparison and analysis of technology and equipment
技术内容 国内外研究现状 技术与装备成果 专用救援车载钻机及配套
机具最大转矩30 000 N·m,最大起拔力1 000 kN,
最大开口直径750 mm,最大卸扣转矩60 000 N·m最大转矩5 1350 N·m,最大起拔力1 200 kN,最大开口直径920 mm,最大上卸扣转矩80 000/100 000 N·m 人力辅助加卸钻具,起下钻效率5 min/根,
随着钻具规格增大劳动强度和安全隐患上升开发了钻具自动加卸系统,与钻机协同作业,实现了一体化集中控制,起下钻效率3 min/根 生命保障孔钻进技术 小直径孔快速冲击钻进技术可以满足浅孔钻进又快又准的要求,但不能解决深孔快速精准钻进问题;平邑石膏矿救援在松散覆盖层、岩盐等地层中62 h完成生命保障孔施工,平均钻速3.55 m/h 形成复杂地层快速精准钻进工艺技术组合。工程试验进尺670.5 m,用时46.83 h,平均钻速14.32 m/h,
中靶精度0.27 m,满足72 h黄金救援需求;超短距离螺旋纠偏技术在栖霞金矿救援中进行了应用,60 m内纠偏7.41 m,成功贯通3号孔 大直径救援井钻进及透巷
技术泥浆正循环钻进速度≤0.8 m/h;
大直径潜孔锤反循环钻进地层适应性较差开发了直径830 mm集束式潜孔锤,采用上排渣技术,工程试验救援井井径830 mm,井深654.1 m,
平均机械钻速3.1 m/h救援提升成套装备 智利圣何塞救援采用了“凤凰号”提升舱,国内也开展了相关装备开发,仅限于提升功能的实现,
提升舱为单体刚性舱体,无信息重构和通信功能开发了柔性救援提升舱,上下舱最大可弯曲2.2° 开发了救援通信检测控制和井壁信息重构系统,实现
848 m井下提升舱与提升车之间的通信和救援井信息重构 -
[1] 袁亮. 煤矿典型动力灾害风险判识及监控预警技术研究进展[J]. 煤炭学报,2020,45(5):1557−1566. DOI: 10.13225/j.cnki.jccs.dy20.0272 YUAN Liang. Research progress on risk identification,assessment,monitoring and early warning technologies of typical dynamic hazards in coal mines[J]. Journal of China Coal Society,2020,45(5):1557−1566. DOI: 10.13225/j.cnki.jccs.dy20.0272
[2] 高广伟,张禄华. 大直径钻孔救援的实践与思考:以山东平邑“12·25”石膏矿坍塌事故救援为例[J]. 中国应急管理,2016(3):74−75. GAO Guangwei,ZHANG Luhua. Practice and thinking of large diameter drilling rescue:Taking the rescue of the “12·25” Gypsum Mine collapse accident in Pingyi,Shandong Province as an example[J]. China Emergency Management,2016(3):74−75.
[3] 王志坚. 矿山钻孔救援技术的研究与务实思考[J]. 中国安全生产科学技术,2011,7(1):5−9. WANG Zhijian. Considering and researching of drilling technology in mine rescue[J]. Journal of Safety Science and Technology,2011,7(1):5−9.
[4] 田宏亮,张阳,郝世俊,等. 矿山灾害应急救援通道快速安全构建技术与装备[J]. 煤炭科学技术,2019,47(5):29−33. TIAN Hongliang,ZHANG Yang,HAO Shijun,et al. Technology and equipment for rapid safety construction of emergency rescue channel after mine disaster[J]. Coal Science and Technology,2019,47(5):29−33.
[5] 李亮. 平邑石膏矿坍塌事故救援成功后的几点思考[J]. 探矿工程(岩土钻掘工程),2016,43(10):281−286. LI Liang. Discussion of Pingyi Gypsum Mine collapse accident rescue[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2016,43(10):281−286.
[6] 杨涛,杜兵建. 山东平邑石膏矿矿难大口径救援钻孔施工技术[J]. 探矿工程(岩土钻掘工程),2017,44(5):19−23. YANG Tao,DU Bingjian. Construction technology of large diameter rescue borehole in Pingyi Gypsum Mine disaster of Shandong[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2017,44(5):19−23.
[7] 凡东,常江华,王贺剑,等. ZMK5530TZJ100型车载钻机的研制[J]. 煤炭科学技术,2017,45(3):111−115. DOI: 10.13199/j.cnki.cst.2017.03.020 FAN Dong,CHANG Jianghua,WANG Hejian,et al. Research and development on ZMK5530TZJ100 mode truck−mounted drilling rig[J]. Coal Science and Technology,2017,45(3):111−115. DOI: 10.13199/j.cnki.cst.2017.03.020
[8] 凡东. ZMK5530TZJ100型车载钻机的试验研究[J]. 煤田地质与勘探,2018,46(2):201−204. DOI: 10.3969/j.issn.1001-1986.2018.02.031 FAN Dong. Test research on ZMK5530TZJ100 truck–mounted drilling rig[J]. Coal Geology & Exploration,2018,46(2):201−204. DOI: 10.3969/j.issn.1001-1986.2018.02.031
[9] 常江华. 复杂工况车载钻机电液系统动态特性及控制方法研究[D]. 北京: 煤炭科学研究总院, 2019. CHANG Jianghua. Dynamic characteristics and control method of electro–hydraulic system of truck–mounted drilling rig on complex operating conditions[D]. Beijing: China Coal Research Institute, 2019.
[10] 田宏亮. 全液压动力头式钻机液压系统动态分析及控制方法的研究[D]. 北京: 煤炭科学研究总院, 2008. TIAN Hongliang. Dynamic analysis and control methods study on hydraulic system of all hydraulic head type drilling rigs[D]. Beijing: China Coal Research Institute, 2008.
[11] 常江华,凡东,田宏亮. 全液压车载钻机给进回路负载特性分析及设计[J]. 煤田地质与勘探,2017,45(6):182−186. DOI: 10.3969/j.issn.1001-1986.2017.06.030 CHANG Jianghua,FAN Dong,TIAN Hongliang. Analysis of load characteristics and design of feeding circuit of fully hydraulic truck–mounted drilling rig[J]. Coal Geology & Exploration,2017,45(6):182−186. DOI: 10.3969/j.issn.1001-1986.2017.06.030
[12] 郑治川. 潜孔锤反循环跟管钻进技术的研究[D]. 吉林: 吉林大学, 2007. ZHENG Zhichuan. Research on reverse circulation down–the–hole hammer drilling with casing technology[D]. Jilin: Jilin University, 2007.
[13] 刘修善,何树山. 井眼轨道的软着陆设计模型及其应用[J]. 天然气工业,2002,22(2):43−45. DOI: 10.3321/j.issn:1000-0976.2002.02.013 LIU Xiushan,HE Shushan. Well–path soft landing design model and its application[J]. Natural Gas Industry,2002,22(2):43−45. DOI: 10.3321/j.issn:1000-0976.2002.02.013
[14] SAWARYN S J,THOROGOOD J L. A compendium of directional calculations based on the minimum curvature method[J]. SPE Drilling & Completion,2005,20(1):24−36.
[15] 高德利. 易斜地层防斜打快钻井理论与技术探讨[J]. 石油钻探技术,2005,33(5):16−19. DOI: 10.3969/j.issn.1001-0890.2005.05.004 GAO Deli. Discussions on theories and techniques about rapid drilling while preventing deviating in formations tending to deflecting[J]. Petroleum Drilling Techniques,2005,33(5):16−19. DOI: 10.3969/j.issn.1001-0890.2005.05.004
[16] 文虎,张铎,郑学召. 矿山钻孔救援生命探测技术研究进展及趋势[J]. 煤矿安全,2017,48(9):85−88. WEN Hu,ZHANG Duo,ZHENG Xuezhao. Research progress and trend of life detection technology of drilling and rescue in mine[J]. Safety in Coal Mines,2017,48(9):85−88.
[17] 郑学召,孙梓峪,张嬿妮,等. 面向钻孔救援的超宽带雷达技术研究现状与方向[J]. 工矿自动化,2021,47(8):20−26. ZHENG Xuezhao,SUN Ziyu,ZHANG Yanni,et al. Research status and direction of ultra–wide band radar technology for borehole rescue[J]. Industry and Mine Automation,2021,47(8):20−26.
[18] 郝世俊,莫海涛. 地面大直径应急救援钻孔成孔工艺设计与分析[J]. 煤田地质与勘探,2021,49(1):277−284. DOI: 10.3969/j.issn.1001-1986.2021.01.031 HAO Shijun,MO Haitao. Design and analysis of hole–forming technology for surface large diameter emergency rescue borehole[J]. Coal Geology & Exploration,2021,49(1):277−284. DOI: 10.3969/j.issn.1001-1986.2021.01.031
[19] 郝世俊,张晶. 大直径救援井高效钻井技术及装备现状与展望[J]. 煤炭科学技术,2021,49(4):75−81. HAO Shijun,ZHANG Jing. Development status and prospect of high–efficiency drilling technology and equipment for large–diameter rescue wells[J]. Coal Science and Technology,2021,49(4):75−81.
[20] 莫海涛,郝世俊,赵江鹏. 煤矿区地面大直径钻孔成孔关键技术与装备[J]. 煤炭科学技术,2021,49(5):190−197. MO Haitao,HAO Shijun,ZHAO Jiangpeng. Key technology and equipment of hole–forming for surface large diameter borehole in coal mine area[J]. Coal Science and Technology,2021,49(5):190−197.
[21] 赵江鹏. 大直径反循环潜孔锤的密封方法与试验研究[J]. 探矿工程(岩土钻掘工程),2015,42(12):61−63. ZHAO Jiangpeng. Sealing method for large–diameter reverse circulation DTH and the experimental study[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2015,42(12):61−63.
[22] 高啟瑜,曹主军,张强,等. 大直径集束式潜孔锤正循环快速扩孔钻进技术试验[J]. 探矿工程(岩土钻掘工程),2015,42(9):38−41. GAO Qiyu,CAO Zhujun,ZHANG Qiang,et al. Tests of normal circulation rapid reaming technology by large diameter cluster DTH hammer[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2015,42(9):38−41.
[23] 李必智,郝世俊,刘明军,等. 大直径救援井动载荷作用下安全透巷距离数值模拟[J]. 煤田地质与勘探,2021,49(2):260−266. DOI: 10.3969/j.issn.1001-1986.2021.02.033 LI Bizhi,HAO Shijun,LIU Mingjun,et al. Numerical simulation of safe distance through roadway drilling under dynamic load of large diameter rescue well[J]. Coal Geology & Exploration,2021,49(2):260−266. DOI: 10.3969/j.issn.1001-1986.2021.02.033
[24] 刘明军,郝世俊,郑玉柱,等. 大直径救援井安全透巷技术研究[J]. 煤炭科学技术,2022,50(3):118−126. LIU Mingjun,HAO Shijun,ZHENG Yuzhu,et al. Study on safe tunneling penetration technology for large diameter rescue wells[J]. Coal Science and Technology,2022,50(3):118−126.
[25] 刘庆修. 大直径深孔载人救援提升装备关键技术研究[D]. 北京: 煤炭科学研究总院, 2019. LIU Qingxiu. Key technology research on manned rescue lifting equipment for deep hole with large diameter[D]. Beijing: China Coal Research Institute, 2019.
[26] 邹祖杰,凡东,刘庆修,等. 矿山地面大直径钻孔救援提升装备研制[J]. 煤炭科学技术,2017,45(12):160−165. DOI: 10.13199/j.cnki.cst.2017.12.028 ZOU Zujie,FAN Dong,LIU Qingxiu,et al. Research and development on rescue lifting equipment of large diameter borehole at mine ground[J]. Coal Science and Technology,2017,45(12):160−165. DOI: 10.13199/j.cnki.cst.2017.12.028
[27] 王超,樊林玉,黄志凌,等. 矿井应急救援舱研究[J]. 黑龙江科技信息,2014(32):51. WANG Chao,FAN Linyu,HUANG Zhiling,et al. Mine emergency rescue cabin study[J]. Heilongjiang Science and Technology Information,2014(32):51.
[28] 李付星,孙健. 人机工程中人体尺寸的修正与重建方法研究[J]. 机械设计,2015,32(4):116−120. LI Fuxing,SUN Jian. Research on correction and reconstruction methods of human dimensions in human–machine engineering[J]. Journal of Machine Design,2015,32(4):116−120.
[29] 范淑果,郝宏伟,杨建芳,等. 最大内接圆法评定圆度误差值的程序设计技术[J]. 燕山大学学报,2005,29(3):264−266. DOI: 10.3969/j.issn.1007-791X.2005.03.017 FAN Shuguo,HAO Hongwei,YANG Jianfang,et al. Program design of maximum inscribed circle method for evaluation of errors of circle roundness[J]. Journal of Yanshan University,2005,29(3):264−266. DOI: 10.3969/j.issn.1007-791X.2005.03.017
[30] 刘顺芳,石建玲. 最大内接圆法评定圆度误差值的快速、精确算法[J]. 计量技术,2006(3):17−19. LIU Shunfang,SHI Jianling. A fast and accurate algorithm for evaluating roundness error values by the maximum inner circle method[J]. Measurement Technique,2006(3):17−19.
[31] 李洋,邹鑫芳. 基于OpenGL的三维井眼轨迹软件在WPF中的设计与实现[J]. 电脑知识与技术,2013,9(8):1801−1805. LI Yang,ZOU Xinfang. Design and implementation of three dimensional well track software based on OpenGL and WPF[J]. Computer Knowledge and Technology,2013,9(8):1801−1805.
[32] 王定远. LabVIEW下的一种通用摄像头驱动方法[J]. 国外电子测量技术,2011,30(12):56−59. DOI: 10.3969/j.issn.1002-8978.2011.12.014 WANG Dingyuan. Method of driving universal cameras in LabVIEW[J]. Foreign Electronic Measurement Technology,2011,30(12):56−59. DOI: 10.3969/j.issn.1002-8978.2011.12.014
[33] 李健. 土压平衡顶管机刀盘的力学分析及优化设计[J]. 洛阳理工学院学报(自然科学版),2021,31(2):29−34. LI Jian. Mechanical analysis and optimal design of cutter head of EPB pipe jacking machine[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition),2021,31(2):29−34.
[34] 许有俊,黄正东,张旭,等. 大断面土压平衡矩形顶管多刀盘实测扭矩参数研究[J]. 现代隧道技术,2021,58(5):96−103. XU Youjun,HUANG Zhengdong,ZHANG Xu,et al. Study on measured Torque parameters of large–section rectangular EPB pipe jacking machine with multiple cutterheads[J]. Modern Tunnelling Technology,2021,58(5):96−103.
[35] 王雷. 井下大断面救援通道顶管快速构建技术与装备[J]. 煤矿安全,2019,50(12):85−88. WANG Lei. Quick Construction technology and equipment of pipe jacking in large section underground rescue channel[J]. Safety in Coal Mines,2019,50(12):85−88.
[36] 赵亮吉,李玉琴. 复合地层中顶管机液压系统参数研究[J]. 铁道建筑技术,2020(11):38−41. DOI: 10.3969/j.issn.1009-4539.2020.11.010 ZHAO Liangji,LI Yuqin. Research on hydraulic system parameters of pipe jacking machine in composite formation[J]. Railway Construction Technology,2020(11):38−41. DOI: 10.3969/j.issn.1009-4539.2020.11.010
[37] 高立康,张海蛟. 粉砂岩及细砂地层的泥水平衡顶管技术[J]. 中国建材科技,2020,29(5):121−123. GAO Likang,ZHANG Haijiao. Mud–water balance pipe jacking technology in siltstone and fine sand formations[J]. China Building Materials Science and Technology,2020,29(5):121−123.
[38] 胡博. 复杂地质条件下液压驱动顶管机的设计与应用[J]. 工程机械与维修,2020(5):63−65. DOI: 10.3969/j.issn.1006-2114.2020.05.023 HU Bo. Design and application of hydraulically driven pipe jacking machine under complex geological conditions[J]. Construction Machinery and Maintenance,2020(5):63−65. DOI: 10.3969/j.issn.1006-2114.2020.05.023
[39] 吕庆洲,唐夕明. 顶管机在含有钢筋等柔性杂物复杂地层中的改进及应用[J]. 隧道建设(中英文),2020,40(7):1066−1071. LYU Qingzhou,TANG Ximing. Improvement and application of pipe jacking machine in complex stratum with steel bar and other flexible sundries[J]. Tunnel Construction,2020,40(7):1066−1071.