透射槽波相邻道质心频率的层析成像方法

田瀚, 吴荣新, 胡泽安, 杨巧楠

田瀚,吴荣新,胡泽安,等. 透射槽波相邻道质心频率的层析成像方法[J]. 煤田地质与勘探,2022,50(11):187−194. DOI: 10.12363/issn.1001-1986.22.04.0221
引用本文: 田瀚,吴荣新,胡泽安,等. 透射槽波相邻道质心频率的层析成像方法[J]. 煤田地质与勘探,2022,50(11):187−194. DOI: 10.12363/issn.1001-1986.22.04.0221
TIAN Han,WU Rongxin,HU Ze’an,et al. Tomography method for adjacent channel frequency shift of transmitted in-Seam waves[J]. Coal Geology & Exploration,2022,50(11):187−194. DOI: 10.12363/issn.1001-1986.22.04.0221
Citation: TIAN Han,WU Rongxin,HU Ze’an,et al. Tomography method for adjacent channel frequency shift of transmitted in-Seam waves[J]. Coal Geology & Exploration,2022,50(11):187−194. DOI: 10.12363/issn.1001-1986.22.04.0221

 

透射槽波相邻道质心频率的层析成像方法

基金项目: 安徽省自然科学基金项目(2008085QD185);安徽省高等学校青年教师科研资助计划项目(gxyq2021180);国家自然科学基金项目(42074148)
详细信息
    作者简介:

    田瀚,1997年生,男,安徽安庆人,硕士研究生,从事地震勘探理论研究. E-mail:1661473083@qq.com

    通讯作者:

    胡泽安,1987年生,男,安徽淮南人,博士,讲师,从事矿井地质构造探测、地震勘探理论研究. E-mail:zahu@aust.edu.cn

  • 中图分类号: P631

Tomography method for adjacent channel frequency shift of transmitted in-Seam waves

  • 摘要:

    槽波勘探是煤层工作面小构造探测的主要方法之一,该方法主要是利用槽波的能量衰减特征。当检波器的耦合差或工作面存在较大地质异常时,会显著影响槽波在不同频段上的能量分布,降低槽波探测结果的稳定性和准确性。利用槽波信号的质心频率变化特征进行反演成像是一种创新且有效的方法,但该方法存在震源质心频率准确估算及兼顾震源差异性的难题。为此,提出基于透射相邻道槽波信号,估算其质心频率相对变化量的层析成像方法。基于理论分析,推导出相邻道槽波质心频率相对变化量(Mi)的计算公式;采用二维数值模拟方法,验证槽波Mi值与传播距离的正向线性变化规律;通过槽波实测试验,对比分析了相邻道质心频率成像方法的效果。结果证明,槽波信号存在频移现象,槽波相邻道Mi值层析成像方法是有效,该方法克服了震源差异性和震源质心频率人为选择不当对成像结果造成的影响,为槽波勘探数据处理提供了一种新的思路。

    Abstract:

    In-Seam Seismic is one of the main detection methods for small geological structures in the coal mining working face. In this method, the energy attenuation feature of in-seam waves is mainly utilized. In case of any significant geological anomaly or receivers coupling difference in coal working face, the energy distribution of the in-seam wave at different frequency bands will be significantly affected, and the stability and accuracy of in-seam wave detection results will be decreased. Using the centroid frequency change features of the in-seam wave signals for inversion imaging is an innovative, effective method. However, for this method, there are difficulties in eliminating diversity influence of seismic source. Therefore, the tomography method base on the adjacent in-seam frequency shift of transmitted in-seam waves, for the estimation of the relative variety of the centroid frequency, was proposed. On the basis of the theoretical analysis, the formula for calculating relative variation of the centroid frequency shift (Mi) based on the adjacent in-Seam transmitted channel waves was derived; the positive linear correlation between Mi and the propagation distance of in-seam wave was verified by two-dimensional numerical simulation; and the normal and new imaging results of field test signals were compared and analyzed. As demonstrated by the above experiment results, there is a frequency shift in in-seam wave signals, and the tomography method with the Mi value is effective. The above method overcomes the effects that are caused by the source difference and the improper artificial selection of source centroid frequency on imaging results, providing a new approach for the processing of in-seam wave data.

  • 图  1   槽波频移数值模拟

    Fig.  1   Numerical simulation of in-Seam wave frequency shift

    图  2   二维数值模型及其信号(z分量)

    Fig.  2   Two-dimension numerical model and its signal (z component)

    图  3   槽波模拟信号的质心频率fR及衰减参数Mi

    Fig.  3   Centroid frequency of in-Seam wave stimulation signals and Mi

    图  4   1311工作面煤层开采地质简图及透射槽波试验观测系统

    Fig.  4   Geological sketch of coal seam mining at 1311 working face, and test observation system of transmission in-seam wave

    图  5   第4共炮点道集的信号fRMi

    Fig.  5   Signal fR from 4th shot of common shot point gather, and Mi

    6   槽波质心频率衰减和能量衰减成像结果对比

    6   Imaging result comparison of in-Seam wave centroid frequency attenuation and energy attenuation

    图  7   基于实测槽波信号的相邻道质心频率层析成像结果

    Fig.  7   Frequency tomography results of adjacent channel centroid based on measured in-seam wave signals

    表  1   数值模型1物理参数

    Table  1   Physical parameters of numerical model 1

    介质纵波波速
    vp/(m·s−1)
    横波波速
    vs/(m·s−1)
    密度
    ρ/(kg·m−3)
    品质因子Q
    煤层1 7001 0001 30050
    围岩3 5002 0002 600150
    下载: 导出CSV

    表  2   数值模型2物理参数

    Table  2   Physical parameters of numerical model 2

    介质纵波波速vp/(m·s−1)横波波速vs/(m·s−1)密度ρ/(kg·m−3)品质因子Q
    煤层1 7001 0001 30050
    围岩3 5002 0002 600150
    异常体(X=390~410 m)1 0005001 00010
    下载: 导出CSV
  • [1] 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭,2021,47(6):1−6.

    YUAN Liang. Study on the development strategy of coal mine safety in China[J]. China Coal,2021,47(6):1−6.

    [2] 袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346−2356.

    YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346−2356.

    [3] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31. DOI: 10.3969/j.issn.1001-1986.2021.01.003

    [4] 杨辉. 反射槽波在阳煤和顺矿区小构造探查中的应用[J]. 煤田地质与勘探,2018,46(增刊1):37−40. DOI: 10.3969/j.issn.1001-1986.2018.S1.008

    YANG Hui. Application of reflected in–seam waves in detecting small structure in Heshun mining area of Yangquan Coal Group[J]. Coal Geology & Exploration,2018,46(Sup.1):37−40. DOI: 10.3969/j.issn.1001-1986.2018.S1.008

    [5] 李刚. 煤矿井下工作面内隐伏断层透射槽波探测技术[J]. 煤田地质与勘探,2016,44(5):142−145. DOI: 10.3969/j.issn.1001-1986.2016.05.027

    LI Gang. Detection technique of transmission in–seam wave for concealed fault in working face of underground coal mine[J]. Coal Geology & Exploration,2016,44(5):142−145. DOI: 10.3969/j.issn.1001-1986.2016.05.027

    [6]

    WANG Bo,LIU Shengdong,ZHOU Fubao,et al. Dispersion characteristics of SH transmitted channel waves and comparative study of dispersion analysis methods[J]. Journal of Computational and Theoretical Nanoscience,2016,13(2):1468−1474. DOI: 10.1166/jctn.2016.5069

    [7] 杨思通,程久龙. 煤巷小构造Rayleigh型槽波超前探测数值模拟[J]. 地球物理学报,2012,55(2):655−662.

    YANG Sitong,CHENG Jiulong. The method of small structure prediction ahead with Rayleigh channel wave in coal roadway and seismic wave field numerical simulation[J]. Chinese Journal of Geophysics (in Chinese),2012,55(2):655−662.

    [8]

    LEI Feng, WANG Wei, LI Songying, et al. Research on the channel wave field characters of goaf in coal mine and its application[M]. Springer Singapore, 2017.

    [9] 崔伟雄,王保利,王云宏. 基于透射槽波的工作面煤层厚度高精度反演方法[J]. 煤炭学报,2020,45(7):2482−2490.

    CUI Weixiong,WANG Baoli,WANG Yunhong. High–precision inversion method of coal seam thickness based on transmission channel wave[J]. Journal of China Coal Society,2020,45(7):2482−2490.

    [10]

    ZHU Mengbo,CHENG Jianyuan,CUI Weixiong,et al. Comprehensive prediction of coal seam thickness by using in–seam seismic surveys and Bayesian Kriging[J]. Acta Geophysica,2019,67:825−836. DOI: 10.1007/s11600-019-00298-y

    [11]

    WANG Wei, XUE Guoqiang, GAO Xing, et al. Channel wave tomographic imaging method and its application in detection of collapse column in coal[C]// 2016 7th International Conference on Environment and Engineering Geophysics & Summit Forum of Chinese Academy of Engineering on Engineering Science and Technology, 2016.

    [12] 王季,李刚,吴国庆,等. 采煤工作面地质异常体透射槽波探测技术[J]. 煤炭科学技术,2016,44(6):159−163.

    WANG Ji,LI Gang,WU Guoqing,et al. Transmitted channel wave detecting technology of geologic anomalous body in coal mining face[J]. Coal Science and Technology,2016,44(6):159−163.

    [13] 姬广忠,程建远,胡继武,等. 槽波衰减系数成像方法及其应用[J]. 煤炭学报,2014,39(增刊2):471−475.

    JI Guangzhong,CHENG Jianyuan,HU Jiwu,et al. In–seam wave imaging using attenuation coefficient:Method and application[J]. Journal of China Coal Society,2014,39(Sup.2):471−475.

    [14] 李松营,廉洁,滕吉文,等. 基于槽波透射法的采煤工作面煤厚解释技术[J]. 煤炭学报,2017,42(3):719−725.

    LI Songying,LIAN Jie,TENG Jiwen,et al. Interpretation technology of coal seam thickness in mining face by ISS transmission method[J]. Journal of China Coal Society,2017,42(3):719−725.

    [15]

    QUAN Youli,HARRIS J M. Seismic attenuation tomography using the frequency shift method[J]. Geophysics,1997,62(3):895−905. DOI: 10.1190/1.1444197

    [16]

    HU Z A, CAO L K, WU R X, et al. Article: Estimation method of coal channel Q value based on frequency shift phenomenon of transmitting channel wave[J]. Exploration Geophysics, 2022. doi: https://doi.org/10.1080/08123985.2022.2054323.

    [17]

    BUCHANAN D J. The propagation of attenuated SH channel waves[J]. Geophysical Prospecting,1978,26(1):16−28. DOI: 10.1111/j.1365-2478.1978.tb01575.x

    [18]

    YANG Sitong,WEI Jiuchuan,CHENG Jiulong,et al. Numerical simulations of full–wave fields and analysis of channel wave characteristics in 3–D coal mine roadway models[J]. Applied Geophysics,2016,13(4):621−630. DOI: 10.1007/s11770-016-0582-9

    [19]

    LI Hui,ZHU Peimin,JI Guangzhong,et al. Modified image algorithm to simulate seismic channel waves in 3D tunnel model with rugged free surfaces[J]. Geophysical Prospecting,2016,64(5):1259−1274. DOI: 10.1111/1365-2478.12351

    [20]

    LUXBACHER K,WESTMAN E,SWANSON P,et al. Three–dimensional time–lapse velocity tomography of an underground longwall panel[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(4):478−485. DOI: 10.1016/j.ijrmms.2007.07.015

  • 期刊类型引用(2)

    1. 蒋新军. 透射槽波在新疆屯宝煤矿多断层工作面的精细探测技术应用. 煤炭技术. 2025(03): 101-106 . 百度学术
    2. 金明方,李度周,王冕,马合飞,仇念广. 不稳定煤层多场联合勘探综合解译技术研究与应用——以河南新义煤矿为例. 地质与勘探. 2024(05): 993-1001 . 百度学术

    其他类型引用(3)

图(8)  /  表(2)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  18
  • PDF下载量:  23
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-05-02
  • 修回日期:  2022-07-29
  • 网络出版日期:  2022-11-14
  • 刊出日期:  2022-11-24

目录

    /

    返回文章
    返回