煤矿井下高压端连续水力加砂压裂增透技术与装备研究

贾秉义, 李树刚, 陈冬冬, 林海飞, 郑凯歌, 孙四清, 赵继展

贾秉义,李树刚,陈冬冬,等. 煤矿井下高压端连续水力加砂压裂增透技术与装备研究[J]. 煤田地质与勘探,2022,50(8):54−61. DOI: 10.12363/issn.1001-1986.22.03.0191
引用本文: 贾秉义,李树刚,陈冬冬,等. 煤矿井下高压端连续水力加砂压裂增透技术与装备研究[J]. 煤田地质与勘探,2022,50(8):54−61. DOI: 10.12363/issn.1001-1986.22.03.0191
JIA Bingyi,LI Shugang,CHEN Dongdong,et al. Study of technologies and equipment of continuous hydraulic sand fracturing for permeability enhancement at high pressure side of coal mine downhole[J]. Coal Geology & Exploration,2022,50(8):54−61. DOI: 10.12363/issn.1001-1986.22.03.0191
Citation: JIA Bingyi,LI Shugang,CHEN Dongdong,et al. Study of technologies and equipment of continuous hydraulic sand fracturing for permeability enhancement at high pressure side of coal mine downhole[J]. Coal Geology & Exploration,2022,50(8):54−61. DOI: 10.12363/issn.1001-1986.22.03.0191

 

煤矿井下高压端连续水力加砂压裂增透技术与装备研究

基金项目: 国家自然科学基金面上项目(51874236);中煤科工集团西安研究院有限公司科技创新基金项目(2021XAYJSQ07)
详细信息
    作者简介:

    贾秉义,1988年生,男,山西朔州人,博士研究生,从事矿井瓦斯防治技术研究与推广应用工作. E-mail:jiabingyiccteg@126.com

    通讯作者:

    李树刚,1963年生,男,甘肃会宁人,博士,教授,博士生导师,从事煤与瓦斯安全共采等方面的研究. E-mail:lisg@xust.edu.cn

  • 中图分类号: TD713

Study of technologies and equipment of continuous hydraulic sand fracturing for permeability enhancement at high pressure side of coal mine downhole

  • 摘要:

    针对煤矿井下作业空间小,供电供水能力有限,地面加砂压裂装备无法直接应用于煤矿井下的现状,提出了高压端加砂压裂的技术思路。基于液动冲击混携砂原理,研发了高压端连续水力加砂压裂装备。该装备不需要外部动力源进行混砂,而是通过压裂液流态和流场的变化形成旋流冲击实现混砂和携砂。理论分析、数值模拟和室内仿真试验均表明,该装备在原理上是可行性的,能够有效混砂和携砂。研发的装备整体耐压达到55 MPa,一次可装石英砂750 kg,可实现单个或者多个穿层钻孔的连续加砂压裂。配套设计了三通道并联的煤矿井下高压端连续水力加砂压裂控制系统,该系统通过矿用压风实现开关的开合,与压裂泵的控制系统协同对加砂过程实现远程集中控制,确保加砂过程安全可靠。运用该装备在安徽淮南矿区潘三煤矿进行了5个底板穿层钻孔的现场试验。结果表明:该装备携砂能力较强,仅需开启通道二即可实现有效加砂,最大连续加砂量150 kg,最大注水量316 m3,加砂压裂钻孔瓦斯抽采纯量、百孔瓦斯抽采量分别是清水压裂钻孔的2.38和2.03倍,增透效果明显。研发的装备可应用于煤矿井下高压水射流、水力切割以及水力加砂压裂等领域。

    Abstract:

    The technological concept of sand fracturing at the high pressure side is proposed against the present situation where the coal mine downhole operation space is small, the power and water supply capacities are limited, and the surface sand fracturing equipment cannot be applied directly in the coal mine downhole. On the basis of the principle of sand mixing and carrying through hydrodynamic impact, the continuous hydraulic sand fracturing equipment at the high pressure side was developed. Such equipment requires no external power source for sand mixing. It forms cyclone impact through the changes in the flow regime and flow field of the fracturing fluid to realize sand mixing and carrying. As indicated by the theoretical analysis, numerical simulation and indoor simulation test, this equipment is feasible in principles, and can effectively mix and carry sand. The developed equipment has the overall pressure resistance of 55 MPa, 750 kg quartz sand can be loaded at one time, and can realize the continuous sand fracturing for a single crossing borehole or multiple crossing boreholes. The associated 3-channel shunt continuous hydraulic sand fracturing control system at the high pressure side of the coal mine downhole was designed. This system uses the mine compressed air to realize the on/off action of the switch, and coordinates with the fracturing pump control system to realize the remote concentrated control over the sand adding process, so as to ensure the safety and reliability during sand adding. The equipment was applied to carry out the field test for 5 floor crossing boreholes at the Pansan Coal Mine in Huainan Mining Area, Anhui. As indicated by the results, this equipment has high sand carrying capacity, and effective sand adding can be realized by only opening Channel II, with the maximum continuous sand adding amount of 150 kg and the maximum injected water amount of 316 m3. The gas extraction scalar quantity of the sand fracturing borehole and the gas extraction quantity of the 100 m borehole were 2.38 and 2.03 times of that of the water fracturing borehole, respectively, showing significant effects in permeability enhancement. The developed equipment can be applied in the fields, such as the coal mine downhole highpressure water jetting, hydraulic cutting and hydraulic sand fracturing.

  • 图  1   高压端水力加砂压裂技术

    Fig.  1   Hydraulic sand fracturing technology at high pressure side

    图  2   液流冲击式混砂装备设计原理

    Fig.  2   Design principle of fluid flow impact sand mixing equipment

    图  3   高压端连续水力加砂压裂装备结构组成

    Fig.  3   Structure composition of high pressure side continuous hydraulic sand fracturing equipment

    图  4   液流冲击下不同时间装置内石英砂分布特征

    Fig.  4   Distribution characteristics of quartz sand in the device at different times under the impact of liquid flow

    图  5   液流冲击下装置出口处石英砂体积分数曲线

    Fig.  5   Volume fraction of quartz sand at the outlet of the device at different times under the impact of liquid flow

    图  6   实验装置及控制系统

    Fig.  6   Experimental device and control system

    图  7   高压端连续水力加砂压裂试验系统

    Fig.  7   Continuous hydraulic sand fracturing test system at high pressure side

    表  1   高压端连续水力加砂压裂装备参数

    Table  1   Parameters of continuous hydraulic sand fracturing equipment at high pressure side

    名称长度/m内径/m容积/m3进液口规格出液口规格
    混砂仓2.7400.5000.450DN19
    携砂仓2.5660.2090.07DN31.5
    下载: 导出CSV

    表  2   模拟实验装置参数

    Table  2   Parameter table of experiment device

    名称长度/mm高度/mm宽度/mm容积/L
    混砂仓40030030018.00
    携砂仓600504.71
    下载: 导出CSV

    表  3   不同过液通路携砂情况统计

    Table  3   Sand carrying statistics of different liquid paths

    方案加注时间/min加砂量/kg石英砂/mm携砂速度/(kg·min−1)备注
    154.50.425~0.8500.9“通道二”中气动加砂阀2未开启
    242.00.5方案1的基础上开启“通道一”
    342.50.625“通道一”和“通道二”中只开启气动加砂阀1、气动加砂阀2的联合通路
    注:表中“通道一”“通道二”均为3.1节中所述内容。
    下载: 导出CSV

    表  4   高压端连续水力加砂压裂施工参数

    Table  4   Construction parameters of continuous hydraulic sand fracturing at high pressure side

    孔号压裂段/m砂量/kg前置液/m3携砂液/m3顶替液/m3最大泵注压力/MPa
    Y267.4140401141029
    Y367.91204063534
    Y378.9110801521034
    GY379.71501001911030
    Y289.51501001901032
    下载: 导出CSV

    表  5   两种工艺钻孔瓦斯抽采情况对比

    Table  5   Comparison of gas extraction from drilling holes in the two technologies

    不同工艺抽采纯量/(m3·min−1)百孔抽采纯量/(m3·min−1)
    加砂压裂0.021.71
    清水压裂0.008 420.842
    比值2.382.03
    下载: 导出CSV
  • [1] 张群, 葛春贵, 李伟, 等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报, 2018, 43(1): 150–159. DOI: 10.13225/j.cnki.jccs.2017.1422

    ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1): 150–159. DOI: 10.13225/j.cnki.jccs.2017.1422

    [2] 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探, 2022, 50(3): 1–14. DOI: 10.12363/issn.1001-1986.21.12.0736

    XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration, 2022, 50(3): 1–14. DOI: 10.12363/issn.1001-1986.21.12.0736

    [3] 姚艳斌, 王辉, 杨延辉, 等. 煤层气储层可改造性评价——以郑庄区块为例[J]. 煤田地质与勘探, 2021, 49(1): 119–129. DOI: 10.3969/j.issn.1001-1986.2021.01.012

    YAO Yanbin, WANG Hui, YANG Yanhui, et al. Evaluation of the hydro–fracturing potential for coalbed methane reservoir: A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration, 2021, 49(1): 119–129. DOI: 10.3969/j.issn.1001-1986.2021.01.012

    [4] 邹才能, 杨智, 董大忠, 等. 非常规源岩层系油气形成分布与前景展望[J]. 地球科学, 2022, 47(5): 1517–1533.

    ZOU Caineng, YANG Zhi, DONG Dazhong, et al. Formation, distribution and prospect of unconventional hydrocarbons in source rock strata in China[J]. Earth Science, 2022, 47(5): 1517–1533.

    [5] 孙四清, 张群, 闫志铭, 等. 碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J]. 煤炭学报, 2017, 42(9): 2337–2344. DOI: 10.13225/j.cnki.jccs.2017.0689

    SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst–prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337–2344. DOI: 10.13225/j.cnki.jccs.2017.0689

    [6] 贾秉义, 陈冬冬, 吴杰, 等. 煤矿井下顶板梳状长钻孔分段压裂强化瓦斯抽采实践[J]. 煤田地质与勘探, 2021, 49(2): 70–76. DOI: 10.3969/j.issn.1001-1986.2021.02.009

    JIA Bingyi, CHEN Dongdong, WU Jie, et al. Practice of enhanced gas extraction by staged fracturing with comb–shaped long hole in coal mine roof[J]. Coal Geology & Exploration, 2021, 49(2): 70–76. DOI: 10.3969/j.issn.1001-1986.2021.02.009

    [7] 郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J]. 采矿与安全工程学报, 2020, 37(2): 272–281. DOI: 10.13545/j.cnki.jmse.2020.02.007

    ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb–like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272–281. DOI: 10.13545/j.cnki.jmse.2020.02.007

    [8] 陈冬冬, 孙四清, 张俭, 等. 井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J]. 煤炭科学技术, 2020, 48(10): 84–89. DOI: 10.13199/j.cnki.cst.2020.10.009

    CHEN Dongdong, SUN Siqing, ZHANG Jian, et al. Technology system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84–89. DOI: 10.13199/j.cnki.cst.2020.10.009

    [9] 王生维, 熊章凯, 吕帅锋, 等. 煤储层水力压裂裂缝中支撑剂特征及研究意义[J]. 煤田地质与勘探, 2022, 50(3): 137–145. DOI: 10.12363/issn.1001-1986.21.12.0813

    WANG Shengwei, XIONG Zhangkai, LYU Shuaifeng, et al. Characteristics and significance of proppant in hydraulic fractures in coal reservoirs[J]. Coal Geology & Exploration, 2022, 50(3): 137–145. DOI: 10.12363/issn.1001-1986.21.12.0813

    [10] 巫修平, 张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268–276.

    WU Xiuping, ZHANG Qun. Research on controlling mechanism of fracture propagation of multi–stage hydraulic fracturing horizontal well in roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience, 2018, 29(2): 268–276.

    [11] 董润平, 张俭, 闫志铭, 等. 煤矿井下煤层顶板分段加砂压裂增渗技术与应用[J]. 煤矿安全, 2022, 53(5): 73–80. DOI: 10.13347/j.cnki.mkaq.2022.05.012

    DONG Runping, ZHANG Jian, YAN Zhiming, et al. Technology and application of sublevel sand fracturing and permeability enhancement of coal seam roof in underground coal mine[J]. Safety in Coal Mines, 2022, 53(5): 73–80. DOI: 10.13347/j.cnki.mkaq.2022.05.012

    [12] 张俭, 刘乐, 王晨阳, 等. 碎软突出煤层顶板定向长钻孔水力加砂分段压裂抽采瓦斯技术研究[R]. 西安: 中煤科工集团西安研究院有限公司, 2021.
    [13] 陈建, 贾秉义, 董瑞刚, 等. 煤矿井下水力压裂加骨料增透瓦斯抽采技术应用[J]. 煤炭工程, 2021, 53(2): 90–94.

    CHEN Jian, JIA Bingyi, DONG Ruigang, et al. Application of hydraulic fracturing and aggregate injecting for permeability enhancement in underground coal mine gas extraction[J]. Coal Engineering, 2021, 53(2): 90–94.

    [14] 孙艳琦, 牛文全. 文丘里管结构参数对其水力性能的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(2): 211–218. DOI: 10.13207/j.cnki.jnwafu.2010.02.005

    SUN Yanqi, NIU Wenquan. Effects of venturi structural parameters on the hydraulic performance[J]. Journal of Northwest A&F University(Natural Science Edition), 2010, 38(2): 211–218. DOI: 10.13207/j.cnki.jnwafu.2010.02.005

    [15] 甘德清, 孙海宽, 薛振林, 等. 温度影响下的充填料浆大流量管输流态演化[J]. 中国矿业大学学报, 2021, 50(2): 248–255. DOI: 10.13247/j.cnki.jcumt.001225

    GAN Deqing, SUN Haikuan, XUE Zhenlin, et al. Transport state evolution of the packed slurry with the influence of temperature[J]. Journal of China University of Mining & Technology, 2021, 50(2): 248–255. DOI: 10.13247/j.cnki.jcumt.001225

    [16] 禹言芳, 王丰, 孟辉波, 等. 旋流静态混合器内瞬态流动特性研究进展[J]. 化工进展, 2013, 32(2): 255–262.

    YU Yanfang, WANG Feng, MENG Huibo, et al. Research progress of the characteristics of instantaneous flow in static mixer with twisted–leaves[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 255–262.

    [17] 卢义玉, 李良伟, 汤积仁, 等. 前混合磨料水射流连续加料系统设计与实验研究[J]. 重庆大学学报, 2018, 41(8): 111–120.

    LU Yiyu, LI Liangwei, TANG Jiren, et al. Design and experimental research of the continuous feeding system of premixed abrasive water jet[J]. Journal of Chongqing University, 2018, 41(8): 111–120.

    [18] 全国安全生产标准化技术委员会煤矿安全分技术委员会. 煤矿瓦斯抽放规范: AQ 1027—2006[S]. 北京: 中国标准出版社, 2006.
  • 期刊类型引用(22)

    1. 郭洋洋. 论一种实现煤矿地质测量信息透明化的方法. 内蒙古煤炭经济. 2025(03): 47-49 . 百度学术
    2. 何文斌. 煤矿巷道三维激光扫描测量精度研究. 内蒙古煤炭经济. 2025(04): 25-27 . 百度学术
    3. 陈晓伟,陈雷,李猛,胡成军,宋磊,袁鹏喆. 一种长巷道形变监测中轴线提取及断面构建方法. 工矿自动化. 2024(02): 35-41 . 百度学术
    4. 鞠哲. 综采工作面三维防爆巡检机器人设计及试验. 煤矿机械. 2024(04): 8-10 . 百度学术
    5. 王嘉伟,王海军,吴汉宁,吴艳,韩珂,程鑫,董敏涛. 基于三维地质建模技术的煤矿隐蔽致灾因素透明化研究. 工矿自动化. 2024(03): 71-81+121 . 百度学术
    6. 汪卫兵,侯学谦,赵栓峰,贺海涛,邢志中,路正雄. 基于残差优化的综采工作面煤壁点云补全方法. 工矿自动化. 2024(06): 120-128 . 百度学术
    7. 贾建龙,王志鹏,赵耀斌,刘飞,贾明超,高子龙,呼雨,陈利剑. 智能化矿用喷浆机器人研究及应用. 中国煤炭. 2024(07): 91-96 . 百度学术
    8. 薛旭升,杨星云,岳佳宁,王川伟,毛清华,马宏伟,王荣泉. 煤矿巷道空间毫米波雷达测量特性与重建方法. 煤田地质与勘探. 2024(10): 186-194 . 本站查看
    9. 林舒萍,宋晓,张铃. 基于三维激光扫描技术的智能制造生产线目标检测研究. 激光杂志. 2024(10): 227-231 . 百度学术
    10. 徐鑫乾,李海涛,吴雪,李成,王红星,王海楠. 基于云模型的激光点云数据快速计算算法. 自动化技术与应用. 2024(11): 107-110 . 百度学术
    11. 刘敬东,李旭,郑志强,苟丙荣,韩维新,巩泽文. 激光SALM技术在煤矿巷道形变监测与支护中的应用. 矿山机械. 2024(12): 52-57 . 百度学术
    12. 袁林山,崔周烽,许长辉,薛松超. 典型地下空间穿戴式三维激光扫描精度分析. 导航定位学报. 2024(06): 76-83 . 百度学术
    13. 贾建称,贾茜,桑向阳,吴艳. 我国煤矿地质保障系统建设30年:回顾与展望. 煤田地质与勘探. 2023(01): 86-106 . 本站查看
    14. 景宁波,马宪民,郭卫,秦学斌. 改进动态半径的矿井激光雷达点云滤波算法. 西安科技大学学报. 2023(02): 406-413 . 百度学术
    15. 常巧梅,杨静,阎跃观. 基于三维激光扫描技术的巷道变形测量方法. 煤炭技术. 2023(06): 30-32 . 百度学术
    16. 顾海荣,罗佳,高子渝,杨文娟,韩帅. 基于深度相机的大直径救援井三维模型重建研究. 煤田地质与勘探. 2023(05): 188-197 . 本站查看
    17. 戴文祥,陈雷,闫鹏飞,王利欣,李波,袁鹏喆. 基于三维激光扫描的煤矿巷道形变监测方法. 工矿自动化. 2023(10): 61-67+95 . 百度学术
    18. 董兴旺. 从智能化共性问题看柳林煤矿智能化未来发展方向. 山西煤炭. 2022(02): 95-99 . 百度学术
    19. 杨洪涛,于印,许吉禅,沈梅,陆广慧. 基于线扫描原理的煤矿巷道变形测量系统. 工矿自动化. 2022(07): 113-117+148 . 百度学术
    20. 李梅,康济童,刘晖,李兆阳,刘曦,朱青,肖彬虎. 基于BIM与GIS的矿山巷道参数化三维建模技术研究. 煤炭科学技术. 2022(07): 25-35 . 百度学术
    21. 亓玉浩,关士远. 基于激光SLAM的综采工作面实时三维建图方法. 工矿自动化. 2022(11): 139-144 . 百度学术
    22. 俞艳波,李小松,苏海华,李琦,卢进宏. 便携式三维激光扫描技术在矿山地下巷道可视化建模中的应用. 北京测绘. 2022(12): 1702-1707 . 百度学术

    其他类型引用(8)

图(7)  /  表(5)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  15
  • PDF下载量:  45
  • 被引次数: 30
出版历程
  • 收稿日期:  2022-03-27
  • 修回日期:  2022-06-11
  • 网络出版日期:  2022-08-10
  • 刊出日期:  2022-08-24

目录

    /

    返回文章
    返回