基于双Packer抽水试验的洛河组水文地质特征垂向变异性研究

李超峰, 刘业献, 张金魁, 任邓君, 侯涛, 刘增平, 徐新启, 马骥, 王青振, 段西亮, 邢介波, 李阳

李超峰,刘业献,张金魁,等. 基于双Packer抽水试验的洛河组水文地质特征垂向变异性研究[J]. 煤田地质与勘探,2023,51(11):55−64. DOI: 10.12363/issn.1001-1986.22.03.0168
引用本文: 李超峰,刘业献,张金魁,等. 基于双Packer抽水试验的洛河组水文地质特征垂向变异性研究[J]. 煤田地质与勘探,2023,51(11):55−64. DOI: 10.12363/issn.1001-1986.22.03.0168
LI Chaofeng,LIU Yexian,ZHANG Jinkui,et al. Vertical variability of hydrogeological characteristics of Luohe Formation by double packer system pumping test[J]. Coal Geology & Exploration,2023,51(11):55−64. DOI: 10.12363/issn.1001-1986.22.03.0168
Citation: LI Chaofeng,LIU Yexian,ZHANG Jinkui,et al. Vertical variability of hydrogeological characteristics of Luohe Formation by double packer system pumping test[J]. Coal Geology & Exploration,2023,51(11):55−64. DOI: 10.12363/issn.1001-1986.22.03.0168

 

基于双Packer抽水试验的洛河组水文地质特征垂向变异性研究

基金项目: 国家重点研发计划课题(2017YFC0804103)
详细信息
    作者简介:

    李超峰,1983年生,男,陕西彬州人,博士,副研究员,从事水文地质及矿井防治水技术研究与应用. E-mail:lichaofeng007@163.com

  • 中图分类号: P641;TD74

Vertical variability of hydrogeological characteristics of Luohe Formation by double packer system pumping test

  • 摘要:

    为了精细探查鄂尔多斯盆地巨厚洛河组水文地质条件并定量评价其含水层段富水性垂向变异特征,提出采用导水系数进行含水层富水性评价,给出了导水系数法富水性7级分级标准;采用双Packer系统对陕西高家堡井田DJ1、DJ2钻孔洛河组垂向10个固定厚度层段进行抽水试验并计算水文地质参数,采用综合富水性指数法对洛河组垂向分层并对比分析其垂向分层水文地质特征。结果显示:(1) 提出导水系数富水性分级标准,即T≤1 m2/d、1 m2/d<T≤10 m2/d、10 m2/d<T≤50 m2/d、50 m2/d<T≤100 m2/d、100 m2/d<T≤200 m2/d、200 m2/d<T≤400 m2/d、T>400 m2/d依次表示富水性极弱、弱、中等、强、很强、特强、极强。(2) 采用综合富水性指数法将洛河组垂向上划分为上段、中上段、中下段和下段4个含水层段。(3) 洛河组垂向分层水文地质特征存在差异。中上段和中下段厚度相对较大,分别为122.20~124.30 m和113.30~148.70 m,岩性以砂岩类地层为主,渗透系数K分别为0.598 9~0.708 5 m/d和0.111 5~0.211 5 m/d,导水系数T分别为65.60~116.94 m2/d和11.05~30.89 m2/d,均相对较大,富水性中等至很强,为主要含水层段;上段和下段厚度相对较小,分别为20.45~35.20 m和57.60~91.19 m,岩性为砂泥岩互层,渗透系数K分别为0.064 6 m/d和0.005 1~0.009 0 m/d,导水系数T分别为1.58 m2/d和0.34~0.66 m2/d,均相对较小,富水性极弱至弱,为次要含水层段。(4)导水系数在多个含水层段之间具有确定的换算关系,采用导水系数法评价显示洛河组含水层段富水性在垂向上存在显著差异,现场应用效果良好。

    Abstract:

    To investigate the hydrogeological conditions of the thick Luohe Formation in Ordos Basin and quantitatively evaluate vertical variation characteristics of its aquifer’ s water-rich, proposes the method of using the coefficient of transmissibility to evaluate the water-rich of the aquifer, and give the seven level classification standard of water-rich by the method of determining coefficient of transmissibility. The double-packer system was used to carry out the pumping tests of 10 vertical sections of fixed thickness of the Luohe Formation in the DJ1 and DJ2 boreholes in the Gaojiabao mine field, shaanxi, and the hydrogeological parameters were calculated. Using the comprehensive water-rich index method to stratify the Luohe Formation vertically and analyze its hydrogeological characteristics vertically. The results show that: (1) The water-rich standards of coefficient of transmissibility are given; when T≤1 m2/d, 1 m2/d<T≤10 m2/d, 10 m2/d<T≤50 m2/d, 50 m2/d<T≤100 m2/d, 100 m2/d<T≤200 m2/d, 200 m2/d<T≤400 m2/d and T>400 m2/d, the water-rich is very weak, weak, medium, strong, very strong, especially strong, and extremely strong. (2) The Luohe Formation is vertically divided into four aquifers including the upper, middle-upper, middle-lower and lower aquifers by the comprehensive water-rich index method. (3) The Luohe Formation vertical hydrogeological characteristics are different. The middle-upper and middle-lower formation are the main aquifers, which are dominated by sandstone strata and relatively thick (122.20-124.30 m and 113.30-148.70 m, respectively), the permeability coefficient K (0.598 9-0.708 5 m/d and 0.111 5-0.211 5 m/d, respectively) and coefficient of transmissibility T (65.60-116.94 m2/d and 11.05-30.89 m2/d, respectively) have relatively large values, and the water-rich are from medium to very strong; The upper and lower formation are the secondary aquifers, which are dominated by sand-mudstone strata and relatively small (20.45-35.20 m and 57.60-91.19 m, respectively), the permeability coefficient K (0.064 6 m/d and 0.005 1-0.009 0 m/d, respectively) and coefficient of transmissibility T (1.58 m2/d and 0.34-0.66 m2/d, respectively) have relatively small values, and the water-rich are from very weak to weak. (4) The coefficient of transmissibility has a definite calculation relationship among multiple aquifers. The coefficient of transmissibility method is used to evaluate the vertical water-rich of the Luohe Formation, and there are significant differences. Therefore, the application was successful.

  • 图  1   双Packer抽水设备放置过程

    Fig.  1   Equipment setup of the double packers

    图  2   过滤器与隔水顶板相接的承压非完整井

    Fig.  2   Partially penetrating well in a confined aquifer with filter connected to the roof

    图  3   过滤器不与隔水顶板相接的承压非完整井

    Fig.  3   Partially penetrating well in a confined aquifer with filter unconnected to the roof

    图  4   水文补勘钻孔分布

    Fig.  4   Location of boreholes for hydrological supplementary exploration

    图  5   洛河组垂向抽水量

    Fig.  5   Sketch of pumping volume of aquifer in Luohe Formation

    图  6   洛河组垂向地下水位

    Fig.  6   Sketch of groundwater level of aquifer in Luohe Formation

    图  7   洛河组垂向各层渗透系数

    Fig.  7   Sketch of permeability coefficient of aquifer in Luohe Formation

    图  8   洛河组垂向导水系数

    Fig.  8   Sketch of transmissibility coefficient of aquifer in Luohe Formation

    图  9   DJ1钻孔洛河组综合富水性指数法垂向分层结果

    Fig.  9   Comprehensive water-rich index of Luohe Formation in borehole DJ1

    图  10   DJ2钻孔洛河组综合富水性指数法垂向分层结果

    Fig.  10   Comprehensive water-rich index of Luohe Formation in borehole DJ2

    图  11   洛河组垂向分层厚度与总厚度百分比饼图

    Fig.  11   Sketch of the ratio of each layer thickness to the total thickness of Luohe Formation

    图  12   洛河组垂向分层岩性累计厚度占比

    Fig.  12   Sketch of the ratio of each lithology thickness to the total thickness of each layer of Luohe Formation

    图  13   洛河组垂向分层渗透系数

    Fig.  13   Sketch of permeability coefficient of each aquifer in Luohe Formation

    图  14   洛河组垂向分层导水系数

    Fig.  14   Sketch of coefficient of transmissibility of each aquifer in Luohe Formation

    表  1   导水系数富水性分级标准

    Table  1   Classification standard of water-rich by coefficient of transmissibility

    含水层富水性等级导水系数T/(m2·d−1)
    极弱T≤1
    1<T≤10
    中等10<T≤50
    50<T≤100
    很强100<T≤200
    特强200<T≤400
    极强T>400
    下载: 导出CSV

    表  2   抽水试验工程量统计

    Table  2   Completion of pumping tests

    类型孔号层位抽水次数
    完整井
    抽水
    DJ1洛河组1
    DJ2洛河组1
    DJ4洛河组1
    DJ4直罗组和延安组1
    非完整
    井抽水
    DJ3洛河组上部层段1
    DJ3洛河组下部层段1
    双Packer
    分层抽水
    (非完整井)
    DJ1洛河组10个层段10
    DJ2洛河组上部8个层段8
    DJ3洛河组下部2个层段2
    合计26
      注:DJ2孔第9、第10层抽水试验变更至DJ3孔完成。
    下载: 导出CSV

    表  3   DJ1、DJ2/DJ3钻孔双Packer分层抽水试验成果

    Table  3   Results of pumping tests using the double packer in DJ1, DJ2/DJ3 boreholes

    钻孔序号抽水层段孔径
    /m
    初始水位
    埋深/m
    恢复水位
    埋深/m
    试验序次Q/(m3·h–1)Sw/mT/(m2·d–1)K/(m·d–1)
    起始埋深/m截止埋深/m厚度/m
    DJ11465.85498.8633.010.085 7299.19297.65113.751311.4526.450.801 4
    211.66086.5839.031.182 5
    34.66492.2046.701.414 8
    平均37.401.132 9
    2499.42532.4333.010.085 7292.30291.17113.75138.0836.841.116 2
    210.07425.2641.461.256 1
    35.05692.5842.431.285 5
    平均40.251.219 2
    3528.75561.7633.010.085 7289.41288.04114.494311.5327.060.819 7
    210.07427.7228.090.850 9
    35.05693.7928.720.870 0
    平均27.960.846 9
    4558.08591.0933.010.085 7286.71286.93113.031329.349.530.288 7
    29.188619.6310.040.304 2
    34.66499.8310.180.308 4
    平均9.920.300 5
    5587.39620.4033.010.085 7286.54286.5116.8180107.591.360.041 1
    24.858671.851.450.043 9
    32.448035.721.470.044 5
    平均1.420.043 1
    6616.62649.6333.010.085 7285.84286.47111.660849.835.000.151 6
    28.082733.145.210.158 0
    34.112316.555.310.160 9
    平均5.180.156 8
    7651.34684.3533.010.085 7287.99296.80111.009556.774.140.125 5
    27.561437.664.290.129 9
    33.937319.014.420.134 0
    平均4.280.129 8
    8684.99718.0033.010.085 7313.27321.4316.362690.891.490.045 3
    24.476260.191.590.048 1
    32.319829.641.670.050 6
    平均1.580.048 0
    9719.43752.6233.190.085 7324.52330.573.6011292.540.260.007 9
    10746.58779.7733.190.085 7327.20307.191.1714322.850.080.002 3
    DJ21531.42555.8124.390.085 7263.03263.5719.4784128.121.540.063 2
    27.308497.371.560.064 1
    34.664959.911.620.066 5
    平均1.580.064 6
    2550.01586.5236.510.085 7269.76270.16115.653542.618.160.223 5
    210.990129.458.290.227 1
    35.897915.668.370.229 2
    平均8.270.226 6
    3588.00624.5136.510.085 7270.36270.59119.319415.7726.910.737 1
    213.388410.8927.010.739 7
    37.06075.7027.210.745 3
    平均27.040.740 7
    4626.08662.5936.510.085 7270.70271.17119.769414.6529.500.808 1
    214.119910.1830.320.830 6
    37.56145.3331.020.849 5
    平均30.280.829 4
    5664.05700.5636.510.085 7271.48273.40114.494372.594.350.119 2
    29.784447.074.530.124 1
    34.858623.774.460.122 1
    平均4.450.121 8
    6692.50729.0136.510.085 7272.75273.66116.746847.197.730.211 7
    211.660837.716.730.184 4
    35.897915.678.200.224 5
    平均7.550.206 9
    7730.11766.6236.510.085 7273.71274.19118.437028.3214.160.387 8
    212.680318.9214.580.399 2
    36.34829.4214.660.401 4
    平均14.460.396 1
    8767.94804.4536.510.085 7274.23274.38113.751369.744.280.117 3
    29.188645.084.430.121 3
    34.664922.234.560.124 9
    平均4.420.121 2
    DJ39796.44833.0236.580.085 7279.70280.336.3482304.380.450.012 4
    10824.79861.3736.580.085 7272.91289.993.2825346.550.200.005 6
    下载: 导出CSV

    表  4   洛河组综合富水性指数法垂向分层结果

    Table  4   Vertical aquifers of Luohe Formation stratified by comprehensive water-rich index 单位:m

    钻孔洛河组
    厚度
    上段
    厚度
    中上段
    厚度
    中下段
    厚度
    下段
    厚度
    DJ1361.8935.20122.20113.3091.19
    DJ2351.0520.45124.30148.7057.60
    均值356.4727.83123.25131.0074.40
    下载: 导出CSV

    表  5   洛河组垂向分层渗透系数计算结果

    Table  5   Calculation results of permeability coefficient of each aquifer in Luohe Formation

    垂向层段渗透系数计算结果/(m·d–1)
    DJ1钻孔DJ2钻孔均值
    上段0.064 60.064 6
    中上段0.708 50.598 90.653 7
    中下段0.111 50.211 50.161 5
    下段0.005 10.009 00.007 1
    下载: 导出CSV

    表  6   洛河组垂向分层导水系数计算结果

    Table  6   Calculation results of coefficient of transmissibility of each aquifer in Luohe Formation

    垂向层段导水系数计算值/(m2·d−1)富水性
    DJ1钻孔DJ2钻孔均值
    上段1.581.58
    中上段116.9465.6091.27强−很强
    中下段11.0530.8920.97中等
    下段0.340.660.50极弱
    下载: 导出CSV

    表  7   洛河组全段导水系数

    Table  7   Results of coefficient of transmissibility of Luohe Formation

    钻孔洛河组全段导水系数计算值/(m2·d–1)富水性
    DJ1128.32很强
    DJ298.72
    下载: 导出CSV
  • [1] 侯光才,林学钰,苏小四,等. 鄂尔多斯白垩系盆地地下水系统研究[J]. 吉林大学学报(地球科学版),2006,36(3):391−398. DOI: 10.13278/j.cnki.jjuese.2006.03.013

    HOU Guangcai,LIN Xueyu,SU Xiaosi,et al. Groundwater system in Ordos Cretaceous Artisan Basin (CAB)[J]. Journal of Jilin University (Earth Science Edition),2006,36(3):391−398. DOI: 10.13278/j.cnki.jjuese.2006.03.013

    [2] 李云峰,冯建国,王玮,等. 鄂尔多斯盆地白垩系含水层系统分析[J]. 西北地质,2004,37(1):90−96.

    LI Yunfeng,FENG Jianguo,WANG Wei,et al. The groundwater system analysis of Cretaceous system of Ordos Basin[J]. Northwestern Geology,2004,37(1):90−96.

    [3] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.

    DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.

    [4] 刘英锋,王新. 黄陇侏罗纪煤田顶板水害防治问题及对策探讨[J]. 西安科技大学学报,2013,33(4):431−435. DOI: 10.3969/j.issn.1672-9315.2013.04.010

    LIU Yingfeng,WANG Xin. Water hazard prevention and control in Huanglong Jurassic Coalfield[J]. Journal of Xi’an University of Science and Technology,2013,33(4):431−435. DOI: 10.3969/j.issn.1672-9315.2013.04.010

    [5] 杨国栋. 永陇矿区麟北郭家河煤矿离层水形成典型地质条件与防治关键技术研究[D]. 西安: 西安科技大学, 2019.

    YANG Guodong. Study on typical geological conditions and key prevention technologies for separated water in Guojiahe Coal Mine[D]. Xi’an: Xi’an University of Science and Technology, 2019.

    [6] 乔伟,王志文,李文平,等. 煤矿顶板离层水害形成机制、致灾机理及防治技术[J]. 煤炭学报,2021,46(2):507−522.

    QIAO Wei,WANG Zhiwen,LI Wenping,et al. Formation mechanism,disaster–causing mechanism and prevention technology of roof bed separation water disaster in coal mines[J]. Journal of China Coal Society,2021,46(2):507−522.

    [7] 张培森,朱慧聪,吴玉华,等. 我国煤矿离层涌突水致灾机理及其防控关键技术研究进展[J]. 工程地质学报,2021,29(4):1057−1070. DOI: 10.13544/j.cnki.jeg.2021-0329

    ZHANG Peisen,ZHU Huicong,WU Yuhua,et al. State–of–the–art of mechanism of water inrush from bed separation and key technology of prevention and pre−control in China[J]. Journal of Engineering Geology,2021,29(4):1057−1070. DOI: 10.13544/j.cnki.jeg.2021-0329

    [8] 李超峰,虎维岳,刘英锋. 洛河组含水层垂向差异性研究及保水采煤意义[J]. 煤炭学报,2019,44(3):848−857. DOI: 10.13225/j.cnki.jccs.2018.6021

    LI Chaofeng,HU Weiyue,LIU Yingfeng. Vertical hydrogeological characteristics of Luohe aquifer and its significance of water−preserved coal mining[J]. Journal of China Coal Society,2019,44(3):848−857. DOI: 10.13225/j.cnki.jccs.2018.6021

    [9] 李超峰,虎维岳. 回采工作面顶板复合含水层涌水量时空组成及过程预测方法[J]. 水文地质工程地质,2018,45(3):1−13.

    LI Chaofeng,HU Weiyue. Prediction method of mine water inflow regime from a layered extra–thick aquifer[J]. Hydrogeology & Engineering Geology,2018,45(3):1−13.

    [10] 李超峰. 煤层顶板含水层涌水危险性评价方法[J]. 煤炭学报,2020,45(增刊1):384−392. DOI: 10.13225/j.cnki.jccs.2019.1634

    LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(Sup.1):384−392. DOI: 10.13225/j.cnki.jccs.2019.1634

    [11] 侯光才, 张茂省, 刘方, 等. 鄂尔多斯盆地地下水勘查研究[M]. 北京: 地质出版社, 2008.
    [12] 徐中华. 鄂尔多斯盆地南区保安群地下水水化学特征及演化机理[D]. 西安: 长安大学, 2010.

    XU Zhonghua. Study on hydrochemical characteristic and evolution mechanism of Bao’ an group groundwater of the Ordos Cretaceous Artesian Basin south[D]. Xi’an: Chang’an University, 2010.

    [13] 杨郧城,侯光才,张茂省,等. 双Packer系统在鄂尔多斯盆地地下水勘查中的应用[J]. 西北地质,2005,38(1):113−115. DOI: 10.3969/j.issn.1009-6248.2005.01.016

    YANG Yuncheng,HOU Guangcai,ZHANG Maosheng,et al. Applications of double Packer system to exploration of the groundwater in Ordos Basin[J]. Northwestern Geology,2005,38(1):113−115. DOI: 10.3969/j.issn.1009-6248.2005.01.016

    [14] 马思锦,汤献敏. Packer系统在地下水勘查中的应用[J]. 陕西地质,2009,27(2):75−82. DOI: 10.3969/j.issn.1001-6996.2009.02.011

    MA Sijin,TANG Xianmin. Application of Packer system on exploration of groundwater[J]. Geology of Shaanxi,2009,27(2):75−82. DOI: 10.3969/j.issn.1001-6996.2009.02.011

    [15] 刘英锋, 李超峰. 陕西彬长胡家河矿业有限公司矿井首采区水文地质补充勘探报告[R]. 西安: 中煤科工集团西安研究院有限公司, 2014.
    [16] 李超峰. 彬长矿区巨厚洛河组垂向差异性研究[J]. 煤炭技术,2018,37(4):131−133. DOI: 10.13301/j.cnki.ct.2018.04.051

    LI Chaofeng. Vertical differences of thick Luohe Formation in Binchang mining area[J]. Coal Technology,2018,37(4):131−133. DOI: 10.13301/j.cnki.ct.2018.04.051

    [17] 李超峰. 采煤工作面顶板巨厚层状含水层涌水量预测研究[D]. 北京: 煤炭科学研究总院, 2019.

    LI Chaofeng. Prediction theory and method of water inflow from roof thick layered aquifer of coal mining face[D]. Beijing: China Coal Research Institute, 2019.

    [18] 李超峰. 水力联系系数法定量评价含水层之间水力联系[J]. 吉林大学学报(地球科学版),2021,51(6):1801−1810.

    LI Chaofeng. Hydraulic connection coefficient and quantitative evaluation of hydraulic connection between aquifers[J]. Journal of Jilin University (Earth Science Edition),2021,51(6):1801−1810.

    [19] 李超峰,姬亚东. 揭露两个含水层混合井初始混合水位形成机理研究[J]. 地下水,2021,43(4):25−28. DOI: 10.19807/j.cnki.DXS.2021-04-007

    LI Chaofeng,JI Yadong. Formation mechanism of initial water level in a mixed well of two aquifers[J]. Groundwater,2021,43(4):25−28. DOI: 10.19807/j.cnki.DXS.2021-04-007

    [20] 纪传豪. 对岩层含水性图编制原则的几点意见[J]. 水文地质工程地质,1959(3):14−15.

    JI Zhuanhao. Opinions on the principles for compiling water–rich maps of formations[J]. Hydrogeology & Engineering Geology,1959(3):14−15.

    [21] 沈树荣. 读“对岩层含水性图编制原则的几点意见”[J]. 水文地质工程地质,1959(10):24−27.

    SHEN Shurong. Read “Opinions on the principles for compiling water–rich maps of formations”[J]. Hydrogeology & Engineering Geology,1959(10):24−27.

    [22] 国家技术监督局. 矿区水文地质工程地质勘探规范: GB 12719—1991[S]. 北京: 中国标准出版社, 1991.
    [23] 国家安全生产监督管理总局, 国家煤矿安全监察局. 煤矿防治水规定[M]. 北京: 煤炭工业出版社, 2009.
    [24] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京: 煤炭工业出版社, 2018.
    [25] 李超峰. 基于导水系数的含水层富水性评价方法[J]. 地下水, 2023, 45(5): 15−17.

    LI Chaofeng. Evaluation method of water–rich of aquifers based on transmissivity[J]. Groundwater, 2023, 45(5): 15−17.

  • 期刊类型引用(10)

    1. 付金磊,林华颖,衡献伟,张书金,陈蒙磊. 顺层瓦斯抽采长钻孔封孔深度分析:以贵州黔北矿区抽采工程为例. 科学技术与工程. 2025(08): 3513-3520 . 百度学术
    2. 段会军. 破碎松软复合煤体高效螺旋钻进技术试验研究. 能源与环保. 2024(04): 228-233+242 . 百度学术
    3. 宋昱播. 复杂软弱煤层条件下高转速大扭矩钻探装备设计及试验研究. 煤矿安全. 2024(06): 200-205 . 百度学术
    4. 陈冬冬. 彬长矿区中硬煤层长钻孔分段水力压裂瓦斯抽采技术. 煤炭工程. 2023(07): 72-77 . 百度学术
    5. 金元甲,马凯,张亚洲,马钱钱. 定向孔抽采特性对布孔参数响应变化规律研究. 矿业安全与环保. 2023(06): 120-124 . 百度学术
    6. 王心龙,孙平贺,赵明哲,王靖源,邢世宽. 管道穿越对煤系土河床冲刷深度的影响. 煤田地质与勘探. 2022(06): 118-124 . 本站查看
    7. 李迎喜. 复杂软弱煤层条件下高速螺旋复合钻进技术研究及实践. 煤矿安全. 2022(08): 87-93 . 百度学术
    8. 徐毅豪,秦汝祥,贾明乐,刘忠平,张成功. 煤层瓦斯测压下向钻孔自动排水实验装置研制. 矿业安全与环保. 2022(04): 176-180+186 . 百度学术
    9. 陆晓东,荣鹏,左宇军,林健云. 开采扰动下底板巷道应力演化规律及围岩稳定性研究. 矿业研究与开发. 2022(11): 102-106 . 百度学术
    10. 张春华,张子健,年军,焦登铭. 大直径双钻孔强化抽采瓦斯效应及效果分析. 煤田地质与勘探. 2021(06): 273-280 . 本站查看

    其他类型引用(2)

图(14)  /  表(7)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  42
  • PDF下载量:  41
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-03-19
  • 修回日期:  2023-04-02
  • 网络出版日期:  2023-08-27
  • 刊出日期:  2023-11-14

目录

    /

    返回文章
    返回