Evolution law of water inflow in full life cycle of working face in deep buried Inner Mongolia-Shaanxi mining area
-
摘要:
蒙陕深埋矿区属于新开发矿区,煤炭开采扰动下水文地质特征仍不清楚,基建和生产过程中发生了多种类型的水害问题,其中工作面回采过程中和回采结束后的涌水变化特征研究处于空白,给井下排水系统设置和防治水工作开展增加了难度。为查清工作面回采前后的全生命周期涌水量演化规律,开展顶板含水层分布、导水裂隙带发育、涌水量变化等方面的实测研究。结果表明:煤层顶板地层均属于河流/河湖相沉积,空间上呈含隔水层互层状展布,隔水层的主要岩性为泥岩、砂质泥岩;受控于鄂尔多斯盆地伊陕斜坡的单斜构造,含煤地层高程在蒙陕接壤区最低,其顶板侏罗纪煤系含水层属于区域性地下水滞流区。煤层顶板地层在中生代沉积旋回作用下,发育了3层直接充水含水层,其中直罗组七里镇砂岩(Ⅰ号含水层)距离3-1煤层顶板77.4~109.4 m,呈富水强、水压高的特点;导水裂隙带实测高度为103.4 m,裂采比18.8,工作面回采过程中导水裂隙带将发育至Ⅰ号含水层。工作面回采前期,随着导水裂隙带向上发育沟通不同含水层,采空区涌水量呈阶段性增加,工作面回采至300 m左右,采空区涌水出现第一个峰值;工作面回采中后期,导水裂隙带持续周期性发育,导致顶板含水层破坏范围不断扩大,采空区涌水量仍呈台阶式增加;工作面回采结束前后,采空区范围内顶板导水裂隙带发育最强烈、范围最大,出现采空区涌水量最高值;工作面回采结束后,在其顶板隔水层中泥质组分的自弥合作用下,隔水层逐渐再造,导水裂隙宽度变窄、数量变少,采空区涌水量“缓坡式”衰减(每小时几十立方米以内)。对工作面涌水量实现全生命周期演化规律掌握,可以为蒙陕深埋矿区井下工作面防治水工作提供科学依据。
Abstract:The deep buried Inner Mongolia-Shaanxi mining area was newly developed, where the hydrogeological characteristics under the disturbance of coal mining were still unclear. Various types of water damage problems had occurred in the process of infrastructure construction and production. Among them, no research was conducted for the variation characteristics of water inflow during and after mining in working face, which increased the difficulty in the arrangement of underground water drainage system and the work of water prevention and control. In order to find out the evolution law of water inflow in the full life cycle of working face before and after mining, the field research was conducted in terms of the distribution of roof aquifer, the development of water diversion fracture zone and the change of water inflow. The results show that the roof strata of coal seam belongs to fluvial/lacustrine sediments, which are spatially distributed in interbed of aquifer and aquiclude, and the main lithology of aquiclude is mudstone and sandy mudstone. Controlled by the monoclinal structure of Yishan slope in Ordos Basin, the coal-bearing stratum has the lowest elevation in the contiguous area of Inner Mongolia and Shaanxi, and the Jurassic coal measure aquifer in its roof belongs to the regional groundwater stagnation area. Besides, three direct water filled aquifers are developed in the roof strata of coal seam under the action of Mesozoic sedimentary cycle. Among them, Qilizhen sandstone (No. I aquifer) in Zhiluo Formation is 77.4-109.4 m away from the 3-1 coal seam roof, which is characterized by strong water abundance and high water pressure. The water conducting fracture zone has the measured height of 103.4 m at the fracture mining ratio of 18.8, and it is developed to No. I aquifer during the process of working face mining. In the early stage of working face mining, different aquifers are connected with the upward development of water conducting fracture zone, so that the water inflow in mined-out area increases periodically. When the working face is mined to about 300 m, the first peak is presented for the water inflow in the mined-out area. In the middle and late stage of mining, the water conducting fracture zone is developed periodically, resulting in the continuous expansion of damage to the roof aquifer, and the water inflow in the mined-out area still increases by step. Before and after the completion of mining in the working face, the roof water conducting fracture zone in the mined-out area is developed in greatest intensity and range, with the highest water inflow occurring in the mined-out area. After the mining of the working face is completed, the aquiclude is gradually reconstructed under the self-healing cooperation of the argillaceous components in the roof aquiclude, with the width and quantity of water conducting fissures narrowed in width and reduced in number, and thus the water inflow in the mined-out area is attenuated gently (within tens of cubic meters per hour). Mastering the evolution law of water inflow in full life cycle of working face could provide a scientific basis for water prevention and control of underground working face in the deep buried Inner Mongolia-Shaanxi mining area.
-
我国“富煤少气贫油”的能源禀赋特征,决定了煤炭是我国未来长期稳定的主体能源 [1-2],2020年我国煤炭产量高达39亿t,是全球最大的煤炭生产和消费国,且我国煤炭资源生产与需求绝对量仍处于增长态势,“十四五”期间煤炭产量将维持在40亿t左右。随着东西部浅部煤炭资源的枯竭,未来煤炭开采将向西部深部延伸,其中蒙陕交界的榆横、呼吉尔特、纳林河等矿区又是重中之重,该地区煤层埋深普遍超过500 m[3-4],具有煤质优良[5-6]、地质条件简单[7-8]等特点,但蒙陕深埋矿区属于新开发矿区,煤层赋存条件、顶板地层结构[9]、含水层空间展布特征[10]等变化较大,研究区水文地质条件仍不完全清楚[11-12],导致难以形成有针对性强和科学有效的防治水措施,多个矿井在基建和生产过程中发生了多种类型的水害问题[13-15],给煤炭资源的安全高效开采造成严重威胁。蒙陕深埋矿区主采煤层顶板发育多层富水含水层,煤炭开采过程中,不同矿井多个含水层都出现了显著的水位下降[16]。目前大量研究集中在工作面回采过程中涌水量变化规律分析、涌水量预测计算等方面,具有很大的局限性,最终误差也非常显著;且工作面回采结束后涌水量如何变化,随着多个工作面持续回采,矿井涌水量如何变化,都缺少相关研究。工作面涌水量总体较大,且波动显著,导致矿井和工作面涌水量变化特征难以准确掌握,特别是工作面涌水量的全生命周期变化特征。由于长周期涌水量数据难以实测统计,给井下排水系统设置和防治水工作开展增加了难度。笔者在煤层顶板含隔水层空间展布特征、煤炭开采导水裂隙带发育规律研究的基础上,开展工作面开采全过程和采后长周期的涌水量监测,掌握蒙陕新建矿区工作面涌水量全生命周期演化规律,并探讨其成因,可以为条件相似煤矿井下合理布置工作面/矿井防排水系统、开展科学的防治水措施提供很好的科学依据。
1 蒙陕深埋矿区概况
研究区位于内蒙古高原东部和毛乌素沙漠东南缘(图1),地形总体呈南北高、中间低趋势,地形较为平坦,滩地与沙丘相间,以滩地为主,沙丘广布;地表均被第四系风积沙覆盖,多为新月形或波状沙丘,厚度一般小于30 m,不整合于下伏地层之上,没有基岩出露。属于干旱半干旱沙漠季风性气候,太阳辐射强烈,日照较丰富,干旱少雨,年降水量350~400 mm,年蒸发量是年降水量的5~6倍。无定河及其支流纳林河从研究区流过,其中无定河是黄河一级支流;研究区主采侏罗系延安组3-1煤(厚度约5.5 m),3-1煤之上发育2-1煤(厚度小于1.0 m),煤层顶板发育第四系、白垩系(包括志丹群)、侏罗系(包括延安组三段、直罗组、安定组)等地层,空间上呈含隔水层互层状展布,隔水层的主要岩性为泥岩、砂质泥岩。
另外,受控于鄂尔多斯盆地伊陕斜坡的单斜构造,含煤地层高程在蒙陕接壤区最低,其顶板侏罗纪煤系含水层属于区域性地下水滞流区,水体矿化度普遍在8 000 mg/L以上。
2 开采水文地质条件
选择研究区中某矿井进行开采水文地质条件分析。某矿井已有6个工作面完成回采(图2),其中01工作面是首采工作面(长2 600 m、宽240 m),02工作面是次采工作面(长3 100 m、宽 240 m),上02工作面开采3-1上煤层(属于3-1煤层分岔煤层)。3-1主采煤层的直接顶由砂质泥岩和粉砂岩构成,延安组三段和直罗组为砂泥岩互层结构,受沉积旋回控制,发育了3层含水层,岩性为中砂岩和粗砂岩,具体为直罗组底部七里镇砂岩含水层(Ⅰ号含水层)、2-1煤顶板真武洞砂岩含水层(Ⅱ号含水层)和3-1煤顶板含水层(Ⅲ号含水层),距离3-1煤层顶板分别为77.4~109.4、48.7~83.2和4.9~16.2 m(图3)。为了查清覆岩破坏高度和采动裂隙分布特征,01首采工作面回采前后,在工作面范围内分别施工一个采前对比孔和采后观测孔,采用钻探取心编录、冲洗液漏失量观测和彩色电视探测等手段,测得本矿井01首采工作面导水裂隙带发育高度为103.4 m,裂采比18.8;另外,根据蒙陕接壤区其他矿井的导水裂隙带发育高度实测结果,裂采比大部分在20~30倍[17],由此可以确定01首采工作面开采过程中导水裂隙带将发育至Ⅰ号含水层。工作面探放水钻孔对这3层含水层揭露表明,钻孔钻进过程中,Ⅰ号含水层钻孔涌水量92.0~136.0 m3/h、水压4.0~5.6 MPa,Ⅱ号含水层钻孔涌水量32.0~42.0 m3/h、水压4.1~5.0 MPa,Ⅲ号含水层钻孔涌水量8.0~10.0 m3/h、水压1.1~3.4 MPa,反映出Ⅰ号含水层富水性最强,且水压最大,是工作面回采过程中最主要的直接充水含水层。
3 工作面涌水量变化规律
3.1 回采前期变化特征
为了避免工作面涌水量过大或波动剧烈,造成工作面水害事故,01首采工作面回采前和回采过程中,对工作面顶板直接充水含水层开展了超前预疏放,累计预疏放水量共计4.235×106 m3,工作面顶板3层直接充水含水层的静储量基本完成疏放(含水层残留部分静储量,无法通过钻孔疏放)。在此前提下,回采前期过程中(回采长度0~500 m)随着煤层顶板覆岩破坏发育高度的不断变化,沟通不同含水层[18-19],导致工作面涌水量也不断变化(图4),具体如下:(1) 根据矿压监测结果,回采过程中初次来压位于60 m位置,这个过程中导水裂隙带发育并沟通Ⅲ号含水层,多个支架顶部出现滴淋水现象,加上切眼附近预疏放钻孔涌水,采空区涌水量达到50 m3/h左右;(2) 工作面周期性来压约30 m,当工作面回采至150~180 m,则出现第一次大的周期性来压,导水裂隙带发育并沟通Ⅱ号含水层,采空区涌水量增至80 m3/h左右;(3) 工作面回采至280~320 m,出现第二次大的周期性来压,导水裂隙带发育并沟通Ⅰ号含水层,采空区涌水量增至132~183 m3/h,且受停产影响,长期支架停放可能导致导水裂隙带发育更高,也对采空区涌水量峰值产生一定影响;(4) 工作面回采至380~500 m,随着工作面持续回采,该段含水层静储量已经完全释放,动态补给量控制下,采空区涌水量逐渐稳定在100~110 m3/h。总体上,可以将工作面回采前期视为导水裂隙带发育升高阶段,随着沟通不同含水层,采空区涌水量持续增大。
3.2 回采中后期变化特征
由于工作面回采过程中顶板导水裂隙带周期性向上发育(图5),随着顶板含水层破坏范围的扩大,采空区涌水量呈台阶式增加(图6):(1) 工作面回采至630~860 m,采空区涌水量出现2次台阶式增加,从100~110 m3/h增至145~170 m3/h和175~200 m3/h,2次涌水量增加的回采间距约150 m,属于大的周期性来压阶段;(2)工作面回采至1100~1200 m,采空区涌水量又出现了一次台阶式增加,达到270~285 m3/h,增加幅度超过70 m3/h;(3) 工作面在1 200~2 600 m回采阶段,随着导水裂隙带对顶板3层含水层的沟通破坏范围持续扩大,采空区涌水量逐渐增至356 m3/h。这个过程中涌水量台阶式增加的现象已经没有之前明显,反映了工作面回采中后期覆岩破坏的周期性已经对涌水量影响较小,顶板含水层被破坏扰动范围持续扩大导致涌水量持续增大是主要原因。
3.3 回采结束后变化特征
整个工作面回采结束后,可能是最后一个大的周期性来压,导致煤层顶板覆岩破坏(即导水裂隙带发育),采空区涌水量在1个月后出现1次台阶式增加,增加幅度30~40 m3/h;由于煤层顶板隔水层以泥岩、砂质泥岩为主,其中泥质成分主要为高岭石、绿泥石,另外还含有约25%的伊利石和蒙脱石;泥岩遇水膨胀特性和采空区顶板压实作用,能够起到“隔水层再造”作用[20-21](图7),01首采工作面回采结束后,采空区涌水量呈“缓坡式”变化(图8):(1) 采空区关闭前期,由于回采形成的覆岩导水裂隙带,顶板含水层水持续进入采空区,导致采空区涌水量仍然维持在较高值(390 m3/h左右),这个过程大概持续3个月;(2) 采空区关闭中期,由于泥岩/砂质泥岩遇水膨胀、地层压实等作用,导水裂隙逐渐自弥合,进入采空区的地下水逐渐减少,导致采空区涌水量也呈减小趋势,特别是关闭后1年多,采空区涌水量急剧减少(从350 m3/h减小至150 m3/h);(3) 采空区关闭后期,顶板隔水层逐渐再造形成,采空区涌水量缓慢下降,直至衰减至无水状态(即采空区反水孔基本不出水)。
综合上述工作面回采和关闭后涌水量变化特征(图9),可以看出:(1) 01工作面开始回采后,随着回采范围的扩大,采空区涌水量总体呈台阶式增加,直至回采结束;(2) 01工作面回采结束后,由于顶板隔水层再造和地层压实作用,采空区涌水量呈“缓坡式”较快衰减趋势,直至采空区不再形成涌水,这可能与相邻采空区位置关系有关,01工作面较02工作面高程相对较高,导致01工作面残余采空区积水进入02工作面采空区。
3.4 其他工作面涌水量变化规律
02工作面与01工作面相邻,在01工作面回采结束1个月后开始回采,回采过程中采空区涌水量变化规律与01工作面相似(图10):(1) 工作面回采过程中,随着采空区范围的不断扩大,顶板覆岩周期性向上部和四周破坏发育,采空区涌水量呈“台阶式”增加;(2) 工作面回采结束前后,采空区范围内顶板导水裂隙带发育破坏程度最强,出现采空区涌水量最高值;(3) 工作面回采结束后,采空区涌水量逐渐衰减,呈“缓坡式”变化;(4) 由于顶板发育形成的导水裂隙不能完全自弥合,采空区会长期形成每小时几十立方米的涌水,这种现象在16工作面和21工作面也存在。
4 结 论
a. 蒙陕深埋矿区某矿井煤层顶板受中生代沉积旋回控制,发育了3层含水层,其中直罗组七里镇砂岩含水层呈富水性强、水压高的特点,工作面回采过程中导水裂隙带将发育至此含水层。
b. 工作面前期回采过程中,随着顶板覆岩破坏不断发育至不同含水层,采空区涌水量呈台阶式增加;中后期回采过程中,受周期性来压控制,导水裂隙带也呈周期性发育,随着顶板含水层破坏范围的扩大,采空区涌水量也表现为“台阶式”增加。
c. 工作面回采结束前后,采空区范围内顶板导水裂隙带发育最强烈,出现采空区涌水量最高值;工作面回采结束后,顶板裂隙自弥合作用下,隔水层逐渐再造形成,采空区涌水量呈“缓坡式”逐渐衰减。
-
-
[1] 顾大钊,张勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术,2016,44(1):1−7. DOI: 10.13199/j.cnki.cst.2016.01.001 GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1−7. DOI: 10.13199/j.cnki.cst.2016.01.001
[2] 武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636. DOI: 10.13225/j.cnki.jccs.2019.0387 WU Qiang,TU Kun,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society,2019,44(6):1625−1636. DOI: 10.13225/j.cnki.jccs.2019.0387
[3] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报,2011,30(4):544−552. DOI: 10.3969/j.issn.1671-2552.2011.04.011 WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China,2011,30(4):544−552. DOI: 10.3969/j.issn.1671-2552.2011.04.011
[4] 黄文辉,敖卫华,翁成敏,等. 鄂尔多斯盆地侏罗纪煤的煤岩特征及成因分析[J]. 现代地质,2010,24(6):1186−1197. DOI: 10.3969/j.issn.1000-8527.2010.06.022 HUANG Wenhui,AO Weihua,WENG Chengmin,et al. Characteristics of coal petrology and genesis of Jurassic coal in Ordos Basin[J]. Geoscience,2010,24(6):1186−1197. DOI: 10.3969/j.issn.1000-8527.2010.06.022
[5] 马良. 煤中硫分布特征及其沉积成因研究:以鄂尔多斯盆地榆横矿区南区为例[J]. 煤炭科学技术,2020,48(8):200−209. DOI: 10.13199/j.cnki.cst.2020.08.025 MA Liang. Study on distribution characteristics and sedimentary genesis of sulfur in coal:Taking southern yuheng mining area of Ordos Basin as a case[J]. Coal Science and Technology,2020,48(8):200−209. DOI: 10.13199/j.cnki.cst.2020.08.025
[6] 张子良. 巴彦高勒煤矿3–1煤层的煤岩煤质特性及利用途径分析[J]. 煤质技术,2018(1):7−11. DOI: 10.3969/j.issn.1007-7677.2018.01.003 ZHANG Ziliang. Coal petrography coal quality characteristics and utilization pathway analysis on Bayangaole Coal Mine 3-1 coal seam[J]. Coal Quality Technology,2018(1):7−11. DOI: 10.3969/j.issn.1007-7677.2018.01.003
[7] 李振宏,董树文,冯胜斌,等. 鄂尔多斯盆地中–晚侏罗世构造事件的沉积响应[J]. 地球学报,2015,36(1):22−30. DOI: 10.3975/cagsb.2015.01.03 LI Zhenhong,DONG Shuwen,FENG Shengbin,et al. Sedimentary response to Middle–Late Jurassic tectonic events in the Ordos Basin[J]. Acta Geoscientica Sinica,2015,36(1):22−30. DOI: 10.3975/cagsb.2015.01.03
[8] 李向平,陈刚,章辉若,等. 鄂尔多斯盆地中生代构造事件及其沉积响应特点[J]. 西安石油大学学报(自然科学版),2006,21(3):1−4. LI Xiangping,CHEN Gang,ZHANG Huiruo,et al. Mesozoic tectonic events in Ordos Basin and their sedimentary responses[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2006,21(3):1−4.
[9] 赵俊峰,刘池洋,赵建设,等. 鄂尔多斯盆地侏罗系直罗组沉积相及其演化[J]. 西北大学学报(自然科学版),2008,38(3):480−486. DOI: 10.16152/j.cnki.xdxbzr.2008.03.022 ZHAO Junfeng,LIU Chiyang,ZHAO Jianshe,et al. Sedimentary facies and its evolution of Jurassic Zhiluo Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2008,38(3):480−486. DOI: 10.16152/j.cnki.xdxbzr.2008.03.022
[10] 杨建,刘洋,刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全,2018,49(4):34−37. DOI: 10.13347/j.cnki.mkaq.2018.04.009 YANG Jian,LIU Yang,LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines,2018,49(4):34−37. DOI: 10.13347/j.cnki.mkaq.2018.04.009
[11] 王洋,武强,丁湘,等. 深埋侏罗系煤层顶板水害源头防控关键技术[J]. 煤炭学报,2019,44(8):2449−2459. WANG Yang,WU Qiang,DING Xiang,et al. Key technologies for prevention and control of roof water disaster at sources in deep Jurassic seams[J]. Journal of China Coal Society,2019,44(8):2449−2459.
[12] 杨建. 蒙陕接壤区深埋型煤层顶板水文地质及水文地球化学特征[J]. 煤矿安全,2016,47(10):176−179. DOI: 10.13347/j.cnki.mkaq.2016.10.047 YANG Jian. Hydrogeological and hydrogeochemical characteristics of deep buried coal seam roof in Shaanxi and Inner Mongolia contiguous area[J]. Safety in Coal Mines,2016,47(10):176−179. DOI: 10.13347/j.cnki.mkaq.2016.10.047
[13] 洪益青,祁和刚,丁湘,等. 蒙陕矿区深部侏罗纪煤田顶板水害防控技术现状与展望[J]. 中国煤炭地质,2017,29(12):55−58. DOI: 10.3969/j.issn.1674-1803.2017.12.11 HONG Yiqing,QI Hegang,DING Xiang,et al. Status quo and prospect of Jurassic Coalfield deep part roof water hazard control technology in Inner Mongolia and Shaanxi mining areas[J]. Coal Geology of China,2017,29(12):55−58. DOI: 10.3969/j.issn.1674-1803.2017.12.11
[14] 杨建,梁向阳,刘基. 封闭不良天然气孔突水过程的水文地球化学特征[J]. 煤田地质与勘探,2017,45(5):82−86. DOI: 10.3969/j.issn.1001-1986.2017.05.015 YANG Jian,LIANG Xiangyang,LIU Ji. Hydrogeochemical characteristics during water inrush of poorly sealed gas hole[J]. Coal Geology & Exploration,2017,45(5):82−86. DOI: 10.3969/j.issn.1001-1986.2017.05.015
[15] 陈卫军. 鄂尔多斯西部煤矿冲击地压治理技术研究[J]. 煤炭科学技术,2018,46(10):99−104. DOI: 10.13199/j.cnki.cst.2018.10.015 CHEN Weijun. Study on control technology of rockburst in coal mines of western Erdos[J]. Coal Science and Technology,2018,46(10):99−104. DOI: 10.13199/j.cnki.cst.2018.10.015
[16] 杨建,刘基,黄浩,等. 鄂尔多斯盆地北部深埋区“地貌–沉积”控水关键要素研究[J]. 地球科学进展,2019,34(5):523−530. DOI: 10.11867/j.issn.1001-8166.2019.05.0523 YANG Jian,LIU Ji,HUANG Hao,et al. Key groundwater control factors of deep buried coalfield by landform and sedimentation in the northern Ordos Basin[J]. Advances in Earth Science,2019,34(5):523−530. DOI: 10.11867/j.issn.1001-8166.2019.05.0523
[17] 杨建,王皓,梁向阳,等. 鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法[J]. 煤田地质与勘探,2021,49(4):185−191. DOI: 10.3969/j.issn.1001-1986.2021.04.022 YANG Jian,WANG Hao,LIANG Xiangyang,et al. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin,China[J]. Coal Geology & Exploration,2021,49(4):185−191. DOI: 10.3969/j.issn.1001-1986.2021.04.022
[18] 虎维岳,姬亚东,黄欢. 煤层顶板承压含水层涌水模式与疏放水钻孔优化设计[J]. 煤田地质与勘探,2021,49(5):139−146. HU Weiyue,JI Yadong,HUANG Huan. Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam[J]. Coal Geology & Exploration,2021,49(5):139−146.
[19] 薛建坤,王皓,赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J]. 采矿与安全工程学报,2020,37(6):1222−1230. XUE Jiankun,WANG Hao,ZHAO Chunhu,et al. Prediction of the height of water−conducting fracture zone and water−filling model of roof aquifer in Jurassic Coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering,2020,37(6):1222−1230.
[20] 李文平,王启庆,李小琴. 隔水层再造:西北保水采煤关键隔水层N2红土工程地质研究[J]. 煤炭学报,2017,42(1):88−97. LI Wenping,WANG Qiqing,LI Xiaoqin. Reconstruction of aquifuge:The engineering geological study of N2 laterite located in key aquifuge concerning coal mining with water protection in northwest China[J]. Journal of China Coal Society,2017,42(1):88−97.
[21] 李全生,鞠金峰,曹志国,等. 采后10 a垮裂岩体自修复特征的钻孔探测研究:以神东矿区万利一矿为例[J]. 煤炭学报,2021,46(5):1428−1438. LI Quansheng,JU Jinfeng,CAO Zhiguo,et al. Detection of the self–healing characteristics of mining fractured rock mass after 10 years of underground coal mining:A case study of Wanli Coal Mine Shendong mining area[J]. Journal of China Coal Society,2021,46(5):1428−1438.