蒙陕深埋矿区工作面涌水量全生命周期演化规律

刘洋, 杨建, 周建军

刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律[J]. 煤田地质与勘探,2022,50(12):152−158. DOI: 10.12363/issn.1001-1986.22.03.0136
引用本文: 刘洋,杨建,周建军. 蒙陕深埋矿区工作面涌水量全生命周期演化规律[J]. 煤田地质与勘探,2022,50(12):152−158. DOI: 10.12363/issn.1001-1986.22.03.0136
LIU Yang,YANG Jian,ZHOU Jianjun. Evolution law of water inflow in full life cycle of working face in deep buried Inner Mongolia-Shaanxi mining area[J]. Coal Geology & Exploration,2022,50(12):152−158. DOI: 10.12363/issn.1001-1986.22.03.0136
Citation: LIU Yang,YANG Jian,ZHOU Jianjun. Evolution law of water inflow in full life cycle of working face in deep buried Inner Mongolia-Shaanxi mining area[J]. Coal Geology & Exploration,2022,50(12):152−158. DOI: 10.12363/issn.1001-1986.22.03.0136

 

蒙陕深埋矿区工作面涌水量全生命周期演化规律

基金项目: 陕西省重点研发计划项目(2022SF-046);中煤科工集团西安研究院有限公司创新基金顶层设计项目(2020XAYDC03);中煤科工集团西安研究院有限公司创新基金技术研究项目(2020XAYJS05)
详细信息
    作者简介:

    刘洋,1978年生,男,江苏盐城人,博士,研究员,从事煤矿防治水科学研究和工程实践. E-mail:liuyang@cctegxian.com

    通讯作者:

    杨建,1979年生,男,江苏盐城人,博士,研究员,从事煤矿防治水研究. E-mail:yangjian@cctegxian.com

  • 中图分类号: TD754

Evolution law of water inflow in full life cycle of working face in deep buried Inner Mongolia-Shaanxi mining area

  • 摘要:

    蒙陕深埋矿区属于新开发矿区,煤炭开采扰动下水文地质特征仍不清楚,基建和生产过程中发生了多种类型的水害问题,其中工作面回采过程中和回采结束后的涌水变化特征研究处于空白,给井下排水系统设置和防治水工作开展增加了难度。为查清工作面回采前后的全生命周期涌水量演化规律,开展顶板含水层分布、导水裂隙带发育、涌水量变化等方面的实测研究。结果表明:煤层顶板地层均属于河流/河湖相沉积,空间上呈含隔水层互层状展布,隔水层的主要岩性为泥岩、砂质泥岩;受控于鄂尔多斯盆地伊陕斜坡的单斜构造,含煤地层高程在蒙陕接壤区最低,其顶板侏罗纪煤系含水层属于区域性地下水滞流区。煤层顶板地层在中生代沉积旋回作用下,发育了3层直接充水含水层,其中直罗组七里镇砂岩(Ⅰ号含水层)距离3-1煤层顶板77.4~109.4 m,呈富水强、水压高的特点;导水裂隙带实测高度为103.4 m,裂采比18.8,工作面回采过程中导水裂隙带将发育至Ⅰ号含水层。工作面回采前期,随着导水裂隙带向上发育沟通不同含水层,采空区涌水量呈阶段性增加,工作面回采至300 m左右,采空区涌水出现第一个峰值;工作面回采中后期,导水裂隙带持续周期性发育,导致顶板含水层破坏范围不断扩大,采空区涌水量仍呈台阶式增加;工作面回采结束前后,采空区范围内顶板导水裂隙带发育最强烈、范围最大,出现采空区涌水量最高值;工作面回采结束后,在其顶板隔水层中泥质组分的自弥合作用下,隔水层逐渐再造,导水裂隙宽度变窄、数量变少,采空区涌水量“缓坡式”衰减(每小时几十立方米以内)。对工作面涌水量实现全生命周期演化规律掌握,可以为蒙陕深埋矿区井下工作面防治水工作提供科学依据。

    Abstract:

    The deep buried Inner Mongolia-Shaanxi mining area was newly developed, where the hydrogeological characteristics under the disturbance of coal mining were still unclear. Various types of water damage problems had occurred in the process of infrastructure construction and production. Among them, no research was conducted for the variation characteristics of water inflow during and after mining in working face, which increased the difficulty in the arrangement of underground water drainage system and the work of water prevention and control. In order to find out the evolution law of water inflow in the full life cycle of working face before and after mining, the field research was conducted in terms of the distribution of roof aquifer, the development of water diversion fracture zone and the change of water inflow. The results show that the roof strata of coal seam belongs to fluvial/lacustrine sediments, which are spatially distributed in interbed of aquifer and aquiclude, and the main lithology of aquiclude is mudstone and sandy mudstone. Controlled by the monoclinal structure of Yishan slope in Ordos Basin, the coal-bearing stratum has the lowest elevation in the contiguous area of Inner Mongolia and Shaanxi, and the Jurassic coal measure aquifer in its roof belongs to the regional groundwater stagnation area. Besides, three direct water filled aquifers are developed in the roof strata of coal seam under the action of Mesozoic sedimentary cycle. Among them, Qilizhen sandstone (No. I aquifer) in Zhiluo Formation is 77.4-109.4 m away from the 3-1 coal seam roof, which is characterized by strong water abundance and high water pressure. The water conducting fracture zone has the measured height of 103.4 m at the fracture mining ratio of 18.8, and it is developed to No. I aquifer during the process of working face mining. In the early stage of working face mining, different aquifers are connected with the upward development of water conducting fracture zone, so that the water inflow in mined-out area increases periodically. When the working face is mined to about 300 m, the first peak is presented for the water inflow in the mined-out area. In the middle and late stage of mining, the water conducting fracture zone is developed periodically, resulting in the continuous expansion of damage to the roof aquifer, and the water inflow in the mined-out area still increases by step. Before and after the completion of mining in the working face, the roof water conducting fracture zone in the mined-out area is developed in greatest intensity and range, with the highest water inflow occurring in the mined-out area. After the mining of the working face is completed, the aquiclude is gradually reconstructed under the self-healing cooperation of the argillaceous components in the roof aquiclude, with the width and quantity of water conducting fissures narrowed in width and reduced in number, and thus the water inflow in the mined-out area is attenuated gently (within tens of cubic meters per hour). Mastering the evolution law of water inflow in full life cycle of working face could provide a scientific basis for water prevention and control of underground working face in the deep buried Inner Mongolia-Shaanxi mining area.

  • 图  1   蒙陕深埋矿区位置和地貌

    Fig.  1   Location and landform of deep buried mining area in Inner Mongolia and Shaanxi

    图  2   研究区某矿井工作面布置

    Fig.  2   Underground working faces distribution in one coal mine of the study area

    图  3   煤层顶板柱状图

    Fig.  3   Column diagram of the coal seam roof

    图  4   01工作面回采前期导水裂隙带和涌水量关系

    Fig.  4   Relationship between water diversion fracture zone and water inflow in early stage of mining in working face 01

    图  5   工作面回采过程中覆岩破坏

    Fig.  5   Overburden failure in the process of mining in working face

    图  6   01工作面回采中后期涌水量变化曲线

    Fig.  6   Variation curve of water inflow in the middle and late stage of mining in working face 01

    图  7   顶板隔水层再造

    Fig.  7   Roof waterproof layer reconstruction

    图  8   01工作面回采结束后涌水量变化曲线

    Fig.  8   Variation curve of water inflow after mining in working face 01

    图  9   01工作面全生命周期涌水量变化曲线

    Fig.  9   Variation curve of water inflow in full cycle of working face 01

    图  10   02工作面全生命周期涌水量变化曲线

    Fig.  10   Variation curve of water inflow in full life cycle of working face 02

  • [1] 顾大钊,张勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术,2016,44(1):1−7. DOI: 10.13199/j.cnki.cst.2016.01.001

    GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1−7. DOI: 10.13199/j.cnki.cst.2016.01.001

    [2] 武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636. DOI: 10.13225/j.cnki.jccs.2019.0387

    WU Qiang,TU Kun,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society,2019,44(6):1625−1636. DOI: 10.13225/j.cnki.jccs.2019.0387

    [3] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用[J]. 地质通报,2011,30(4):544−552. DOI: 10.3969/j.issn.1671-2552.2011.04.011

    WANG Shuangming. Ordos Basin tectonic evolution and structural control of coal[J]. Geological Bulletin of China,2011,30(4):544−552. DOI: 10.3969/j.issn.1671-2552.2011.04.011

    [4] 黄文辉,敖卫华,翁成敏,等. 鄂尔多斯盆地侏罗纪煤的煤岩特征及成因分析[J]. 现代地质,2010,24(6):1186−1197. DOI: 10.3969/j.issn.1000-8527.2010.06.022

    HUANG Wenhui,AO Weihua,WENG Chengmin,et al. Characteristics of coal petrology and genesis of Jurassic coal in Ordos Basin[J]. Geoscience,2010,24(6):1186−1197. DOI: 10.3969/j.issn.1000-8527.2010.06.022

    [5] 马良. 煤中硫分布特征及其沉积成因研究:以鄂尔多斯盆地榆横矿区南区为例[J]. 煤炭科学技术,2020,48(8):200−209. DOI: 10.13199/j.cnki.cst.2020.08.025

    MA Liang. Study on distribution characteristics and sedimentary genesis of sulfur in coal:Taking southern yuheng mining area of Ordos Basin as a case[J]. Coal Science and Technology,2020,48(8):200−209. DOI: 10.13199/j.cnki.cst.2020.08.025

    [6] 张子良. 巴彦高勒煤矿3–1煤层的煤岩煤质特性及利用途径分析[J]. 煤质技术,2018(1):7−11. DOI: 10.3969/j.issn.1007-7677.2018.01.003

    ZHANG Ziliang. Coal petrography coal quality characteristics and utilization pathway analysis on Bayangaole Coal Mine 3-1 coal seam[J]. Coal Quality Technology,2018(1):7−11. DOI: 10.3969/j.issn.1007-7677.2018.01.003

    [7] 李振宏,董树文,冯胜斌,等. 鄂尔多斯盆地中–晚侏罗世构造事件的沉积响应[J]. 地球学报,2015,36(1):22−30. DOI: 10.3975/cagsb.2015.01.03

    LI Zhenhong,DONG Shuwen,FENG Shengbin,et al. Sedimentary response to Middle–Late Jurassic tectonic events in the Ordos Basin[J]. Acta Geoscientica Sinica,2015,36(1):22−30. DOI: 10.3975/cagsb.2015.01.03

    [8] 李向平,陈刚,章辉若,等. 鄂尔多斯盆地中生代构造事件及其沉积响应特点[J]. 西安石油大学学报(自然科学版),2006,21(3):1−4.

    LI Xiangping,CHEN Gang,ZHANG Huiruo,et al. Mesozoic tectonic events in Ordos Basin and their sedimentary responses[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2006,21(3):1−4.

    [9] 赵俊峰,刘池洋,赵建设,等. 鄂尔多斯盆地侏罗系直罗组沉积相及其演化[J]. 西北大学学报(自然科学版),2008,38(3):480−486. DOI: 10.16152/j.cnki.xdxbzr.2008.03.022

    ZHAO Junfeng,LIU Chiyang,ZHAO Jianshe,et al. Sedimentary facies and its evolution of Jurassic Zhiluo Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition),2008,38(3):480−486. DOI: 10.16152/j.cnki.xdxbzr.2008.03.022

    [10] 杨建,刘洋,刘基. 基于沉积控水的鄂尔多斯盆地侏罗纪煤田防治水关键层研究[J]. 煤矿安全,2018,49(4):34−37. DOI: 10.13347/j.cnki.mkaq.2018.04.009

    YANG Jian,LIU Yang,LIU Ji. Study on key layer of water prevention and control in Ordos Basin Jurassic Coalfield based on sedimentary water control theory[J]. Safety in Coal Mines,2018,49(4):34−37. DOI: 10.13347/j.cnki.mkaq.2018.04.009

    [11] 王洋,武强,丁湘,等. 深埋侏罗系煤层顶板水害源头防控关键技术[J]. 煤炭学报,2019,44(8):2449−2459.

    WANG Yang,WU Qiang,DING Xiang,et al. Key technologies for prevention and control of roof water disaster at sources in deep Jurassic seams[J]. Journal of China Coal Society,2019,44(8):2449−2459.

    [12] 杨建. 蒙陕接壤区深埋型煤层顶板水文地质及水文地球化学特征[J]. 煤矿安全,2016,47(10):176−179. DOI: 10.13347/j.cnki.mkaq.2016.10.047

    YANG Jian. Hydrogeological and hydrogeochemical characteristics of deep buried coal seam roof in Shaanxi and Inner Mongolia contiguous area[J]. Safety in Coal Mines,2016,47(10):176−179. DOI: 10.13347/j.cnki.mkaq.2016.10.047

    [13] 洪益青,祁和刚,丁湘,等. 蒙陕矿区深部侏罗纪煤田顶板水害防控技术现状与展望[J]. 中国煤炭地质,2017,29(12):55−58. DOI: 10.3969/j.issn.1674-1803.2017.12.11

    HONG Yiqing,QI Hegang,DING Xiang,et al. Status quo and prospect of Jurassic Coalfield deep part roof water hazard control technology in Inner Mongolia and Shaanxi mining areas[J]. Coal Geology of China,2017,29(12):55−58. DOI: 10.3969/j.issn.1674-1803.2017.12.11

    [14] 杨建,梁向阳,刘基. 封闭不良天然气孔突水过程的水文地球化学特征[J]. 煤田地质与勘探,2017,45(5):82−86. DOI: 10.3969/j.issn.1001-1986.2017.05.015

    YANG Jian,LIANG Xiangyang,LIU Ji. Hydrogeochemical characteristics during water inrush of poorly sealed gas hole[J]. Coal Geology & Exploration,2017,45(5):82−86. DOI: 10.3969/j.issn.1001-1986.2017.05.015

    [15] 陈卫军. 鄂尔多斯西部煤矿冲击地压治理技术研究[J]. 煤炭科学技术,2018,46(10):99−104. DOI: 10.13199/j.cnki.cst.2018.10.015

    CHEN Weijun. Study on control technology of rockburst in coal mines of western Erdos[J]. Coal Science and Technology,2018,46(10):99−104. DOI: 10.13199/j.cnki.cst.2018.10.015

    [16] 杨建,刘基,黄浩,等. 鄂尔多斯盆地北部深埋区“地貌–沉积”控水关键要素研究[J]. 地球科学进展,2019,34(5):523−530. DOI: 10.11867/j.issn.1001-8166.2019.05.0523

    YANG Jian,LIU Ji,HUANG Hao,et al. Key groundwater control factors of deep buried coalfield by landform and sedimentation in the northern Ordos Basin[J]. Advances in Earth Science,2019,34(5):523−530. DOI: 10.11867/j.issn.1001-8166.2019.05.0523

    [17] 杨建,王皓,梁向阳,等. 鄂尔多斯盆地北部深埋煤层工作面涌水量预测方法[J]. 煤田地质与勘探,2021,49(4):185−191. DOI: 10.3969/j.issn.1001-1986.2021.04.022

    YANG Jian,WANG Hao,LIANG Xiangyang,et al. Water inflow forecasting method of deep buried coal working face in northern Ordos Basin,China[J]. Coal Geology & Exploration,2021,49(4):185−191. DOI: 10.3969/j.issn.1001-1986.2021.04.022

    [18] 虎维岳,姬亚东,黄欢. 煤层顶板承压含水层涌水模式与疏放水钻孔优化设计[J]. 煤田地质与勘探,2021,49(5):139−146.

    HU Weiyue,JI Yadong,HUANG Huan. Mine water inflow modes and scientific design of drainage boreholes in roof confined aquifer of coal seam[J]. Coal Geology & Exploration,2021,49(5):139−146.

    [19] 薛建坤,王皓,赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J]. 采矿与安全工程学报,2020,37(6):1222−1230.

    XUE Jiankun,WANG Hao,ZHAO Chunhu,et al. Prediction of the height of water−conducting fracture zone and water−filling model of roof aquifer in Jurassic Coalfield in Ordos Basin[J]. Journal of Mining & Safety Engineering,2020,37(6):1222−1230.

    [20] 李文平,王启庆,李小琴. 隔水层再造:西北保水采煤关键隔水层N2红土工程地质研究[J]. 煤炭学报,2017,42(1):88−97.

    LI Wenping,WANG Qiqing,LI Xiaoqin. Reconstruction of aquifuge:The engineering geological study of N2 laterite located in key aquifuge concerning coal mining with water protection in northwest China[J]. Journal of China Coal Society,2017,42(1):88−97.

    [21] 李全生,鞠金峰,曹志国,等. 采后10 a垮裂岩体自修复特征的钻孔探测研究:以神东矿区万利一矿为例[J]. 煤炭学报,2021,46(5):1428−1438.

    LI Quansheng,JU Jinfeng,CAO Zhiguo,et al. Detection of the self–healing characteristics of mining fractured rock mass after 10 years of underground coal mining:A case study of Wanli Coal Mine Shendong mining area[J]. Journal of China Coal Society,2021,46(5):1428−1438.

图(10)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  15
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 修回日期:  2022-11-02
  • 网络出版日期:  2022-12-01
  • 刊出日期:  2022-12-24

目录

    /

    返回文章
    返回