留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鄂尔多斯盆地东缘煤层气勘探开发历程与启示

杨秀春 徐凤银 王虹雅 李曙光 林文姬 王伟 郝帅

杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41 doi: 10.12363/issn.1001-1986.21.12.0823
引用本文: 杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41 doi: 10.12363/issn.1001-1986.21.12.0823
YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41 doi: 10.12363/issn.1001-1986.21.12.0823
Citation: YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41 doi: 10.12363/issn.1001-1986.21.12.0823

鄂尔多斯盆地东缘煤层气勘探开发历程与启示

doi: 10.12363/issn.1001-1986.21.12.0823
基金项目: 国家科技重大专项项目(2016ZX05042);中石油煤层气有限责任公司科技项目(2022KJ17)
详细信息
    第一作者:

    杨秀春,1970年生,女,山东单县人,博士,高级工程师,从事油气地质研究工作. E-mail:yangxiuchun2009@petrochina.com.cn

  • 中图分类号: P618.13

Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment

  • 摘要: 鄂尔多斯盆地东缘煤层埋深变化较大,不同埋深的煤层气成藏特征及储层改造方式差别较大。目前煤层气勘探开发深度逐渐从1 000 m以浅延伸到2 000 m以深,为了研究不同埋深条件下煤层气资源高效勘探开发理论技术,系统梳理回顾了鄂尔多斯盆地东缘近30年的勘探开发实践,按照地质认识转变、技术发展、勘探工作量、勘探成果和产气量变化,将鄂尔多斯盆地东缘煤层气勘探开发历程分为3个阶段:浅层煤层气勘探阶段,在“浅层富煤区构造高点富集”理论指导下,寻找“煤层埋深小于800 m、煤层厚度大、高含气量、构造高点”目标,发现韩城WL1井区气田;浅–中深层煤层气规模勘探阶段,以“水动力控气–构造调整–缓坡单斜”成藏理论指导,优选“埋深小于1 500 m、水动力封闭条件好、煤层厚度大、高含气量、缓坡单斜及正向构造”甜点,发现保德、临汾煤层气田,转变储层改造理念,实现韩城构造煤有效增产改造;深层煤层气勘探突破阶段,提出“温压控气、高饱和”成藏模式,指导2 000 m以深煤层气的勘探突破。在此基础上,重点剖析了典型区块的煤层气赋存、富集特征和目标方向,总结了鄂尔多斯盆地东缘煤层气勘探开发获得的3点启示:保存条件是保德区块浅层煤层气富集成藏的重要因素;3类顶板间接压裂射孔模式支撑了韩城构造煤增产改造;“地质–工程”甜点评价助推了大宁−吉县深层煤层气勘探突破。

     

  • 图  1  鄂尔多斯盆地东缘区域位置与煤系综合柱状图

    Fig. 1  Location map of the study area and coalbed column in eastern margin of Ordos Basin

    图  2  鄂尔多斯盆地东缘煤层气勘探阶段划分

    Fig. 2  Exploration stage of coalbed methane in eastern margin of Ordos Basin

    图  3  鄂尔多斯盆地东缘勘探钻井工作量统计

    Fig. 3  Exploration and drilling workloads in eastern margin of Ordos Basin

    图  4  保德区块煤储层孔隙与裂隙特征

    Fig. 4  Pores and fractures of coal reservoir in Baode Block

    图  5  岩性组合对间接压裂效果的影响

    Fig. 5  Lithological combination suitable for indirect fracturing

    图  6  大宁–吉县区块深层煤储层孔隙与裂隙特征

    Fig. 6  Pores and fractures of deep coal reservoir in Daning-Jixian Block

    表  1  煤层与顶底板岩石力学性质

    Table  1  Rock mechanical properties of coal seam, roof and floor

    层位最小主应力/MPa弹性模量/
    MPa
    泊松比
    5号煤层顶板14.321 0500.239 6
    5号煤层13.46 7650.262 4
    5号煤层底板15.114 2510.249 0
    11号煤层顶板15.715 2790.248 5
    11号煤层13.96 5430.354 4
    11号煤层底板16.218 0720.246 3
    下载: 导出CSV

    表  2  顶板间接压裂模式与射孔优化

    Table  2  Indirect fracturing modes and perforation optimization of roof

    顶板间接
    压裂模式
    产气通
    道类型
    射孔优化
    射孔位置射孔长度
    煤层+砂岩顶板压裂 顶板+煤层通道 煤体结构较完整时,顶板与煤层射孔比例1∶1;煤体结构破碎时,顶板与煤层射孔比例2∶1 邻井施工压力较低,顶板砂岩砂质质量分数大于80%,射孔长度3.0~3.5 m;邻井施工压力较高,顶板砂岩砂质质量分数低于80%,射孔长度3.5~4.0 m
    砂岩顶板压裂
    顶板通道 新射孔段与原射孔段距离4~5 m,优选顶板砂质含量高的位置射孔 邻井施工压力较低,顶板砂岩砂质质量分数大于80%,射孔长度3.0~3.5 m;邻井施工压力较高,顶板砂岩砂质含量低于80%,射孔长度3.5~4.0 m
    泥岩顶板压裂
    顶板通道 新射孔段与原射孔段距离4~5 m;优选顶板GR较低位置射孔 邻井施工压力较低,顶板GR<120 API,射孔长度3.0~3.5 m;邻井施工压力较高,顶板GR>120 API,射孔长度3.5~4.0 m
    下载: 导出CSV

    表  3  深层煤层气地质−工程甜点评价指标

    Table  3  Evaluation indexes of deep coal bed methane geology-engineering sweet spot

    地质甜点区工程甜点区
    指标标准指标标准
    构造特征正向构造、平缓单斜顶底板岩性及力学性质致密灰岩、泥岩
    煤层厚度/m6~15顶板隔层应力差/MPa>6
    埋深/m2 000~2 600底板隔层应力差/MPa>6
    含气量/(m3·t−1)>20煤体结构原生结构
    下载: 导出CSV
  • [1] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18. XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of “double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18.
    [2] 朱庆忠,杨延辉,左银卿,等. 中国煤层气开发存在的问题及破解思路[J]. 天然气工业,2018,38(4):96−100. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. CBM development in China:Challenges and solutions[J]. Natural Gas Industry,2018,38(4):96−100. doi: 10.3787/j.issn.1000-0976.2018.04.011
    [3] 杨陆武. 难动用煤层气资源的高产开采技术研究:论煤层气资源的特殊性及其开发工程中的“窗–尾效应”[J]. 煤炭学报,2016,41(1):32−39. YANG Luwu. Produce high rate gas from poor CBM reservoir:Study on CBM resource types and “Window–Long tail Effects” of reservoir during delivering gas[J]. Journal of China Coal Society,2016,41(1):32−39.
    [4] 朱庆忠,杨延辉,左银卿,等. 对于高煤阶煤层气资源科学开发的思考[J]. 天然气工业,2020,40(1):55−60. ZHU Qingzhong,YANG Yanhui,ZUO Yinqing,et al. On the scientific exploitation of high–rank CBM resources[J]. Natural Gas Industry,2020,40(1):55−60. doi: 10.3787/j.issn.1000-0976.2020.01.007
    [5] 李五忠,孙斌,孙钦平,等. 以煤系天然气开发促进中国煤层气发展的对策分析[J]. 煤炭学报,2016,41(1):67−71. LI Wuzhong,SUN Bin,SUN Qinping,et al. Analysis on coal−bed methane development based on coal measure gas in China and its countermeasure[J]. Journal of China Coal Society,2016,41(1):67−71.
    [6] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68. GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.
    [7] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604. ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
    [8] 邹才能,杨智,黄士鹏,等. 煤系天然气的资源类型、形成分布与发展前景[J]. 石油勘探与开发,2019,46(3):433−442. ZOU Caineng,YANG Zhi,HUANG Shipeng,et al. Resource types,formation,distribution and prospects of coal−measure gas[J]. Petroleum Exploration and Development,2019,46(3):433−442.
    [9] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129−136. JIA Chengzao,ZHENG Min,ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development,2012,39(2):129−136.
    [10] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979−1007. ZOU Caineng,YANG Zhi,ZHU Rukai,et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica,2015,89(6):979−1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
    [11] 戴金星. 中国煤成气研究二十年的重大进展[J]. 石油勘探与开发,1999,26(3):1−10. DAI Jinxing. Significant advancement in research on coal formed gas in China[J]. Petroleum Exploration and Development,1999,26(3):1−10. doi: 10.3321/j.issn:1000-0747.1999.03.001
    [12] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业, 2010, 30(6): 1–6.

    JIE Mingxun. Prospects in coalbed methane gas exploration and production in the eastern Ordos Basin[J]. Natural Gas Industry, 20l0, 30(6): l–6.
    [13] 接铭训,葛晓丹,彭朝阳,等. 中国煤层气勘探开发工程技术进展与发展方向[J]. 天然气工业,2011,3l(12):63−65. JIE Mingxun,GE Xiaodan,PENG Chaoyang,et al. Advances in the CBM exploration and development techniques and their developing trend in China[J]. Natural Gas Industry,2011,3l(12):63−65. doi: 10.3787/j.issn.1000-0976.2011.12.010
    [14] 秦勇,袁亮,胡千庭,等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术,2012,40(10):1−6. QIN Yong,YUAN Liang,HU Qianting,et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology,2012,40(10):1−6.
    [15] 李勇,孟尚志,吴鹏,等. 煤层气成藏机理及气藏类型划分:以鄂尔多斯盆地东缘为例[J]. 天然气工业,2017,37(8):22−30. LI Yong,MENG Shangzhi,WU Peng,et al. Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(8):22−30. doi: 10.3787/j.issn.1000-0976.2017.08.003
    [16] 刘大锰,李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术,2014,42(6):19−24. LIU Dameng,LI Junqian. Main geological controls on distribution and occurence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology,2014,42(6):19−24.
    [17] 伊伟. 鄂尔多斯盆地韩城矿区中煤阶煤层气成藏模式[J]. 新疆石油地质,2017,38(2):165−170. YI Wei. Accumulation pattern of medium rank coalbed methane in Hancheng mining area,Ordos Basin[J]. Xinjiang Petroleum Geology,2017,38(2):165−170.
    [18] 陈跃,马东民,方世跃,等. 构造和水文地质条件耦合作用下煤层气富集高产模式[J]. 西安科技大学学报,2019,39(4):644−655. CHEN Yue,MA Dongmin,FANG Shiyue,et al. Enrichment and high–yield models of coalbed methane influenced by geologic structures and hydrologic conditions[J]. Journal of Xi’an University of Science and Technology,2019,39(4):644−655.
    [19] 张用德,唐书恒,张淑霞. 国外煤层气开发对我国的启示[J]. 中国矿业,2013,22(增刊1):4−6. ZHANG Yongde,TANG Shuheng,ZHANG Shuxia. Thinking of coal bed methane development in China according to abroad countries development experiments[J]. China Mining Magazine,2013,22(Sup.1):4−6.
    [20] 曹艳,龙胜祥,李辛子,等. 国内外煤层气开发状况对比研究的启示[J]. 新疆石油地质,2014,35(1):109−113. CAO Yan,LONG Shengxiang,LI Xinzi,et al. The enlightenment from comparative studies of the coalbed methane(CBM) development at Home and Abroad[J]. Xinjiang Petroleum Geology,2014,35(1):109−113.
    [21] 聂志宏,巢海燕,刘莹,等. 鄂尔多斯盆地东缘深部煤层气生产特征及开发对策:以大宁–吉县区块为例[J]. 煤炭学报,2018,43(6):1738−1746. NIE Zhihong,CHAO Haiyan,LIU Ying,et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin:Taking Daning–Jixian block for example[J]. Journal of China Coal Society,2018,43(6):1738−1746.
    [22] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1−11. WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):1−11.
    [23] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136. QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.
    [24] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296. YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology−engineering integration fracturing for deep CBM in Yanchuannan field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.
    [25] 梁冰,石迎爽,孙维吉,等. 中国煤系“三气”成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167−173. LIANG Bing,SHI Yingshuang,SUN weiji,et al. Reservoir forming characteristics of “the three gases” in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society,2016,41(1):167−173.
    [26] 李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24−31. LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):24−31.
    [27] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159. ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159.
    [28] OLSEN T N, BRENIZE G, FRENZEL T. Improvement processes for coalbed natural gas completion and stimulation[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: 5−80 October, 2003, SPE–84122–MS.
    [29] 饶孟余,张遂安,商昌盛. 提高我国煤层气采收率的主要技术分析[J]. 中国煤层气,2007,4(2):12−16. RAO Mengyu,ZHANG Sui’an,SHANG Changsheng. Analysis on key techniques to improve CBM recovery in China[J]. China Coalbed Methane,2007,4(2):12−16. doi: 10.3969/j.issn.1672-3074.2007.02.003
    [30] 张金波,吴财芳. 煤层气开采技术应用现状及其改进[J]. 煤炭科学技术,2012,40(8):88−91. ZHANG Jinbo,WU Caifang. Application status and improvement of coal bed methane development technology[J]. Coal Science and Technology,2012,40(8):88−91.
    [31] 边利恒,熊先钺,王炜彬. 低渗透软煤储层压裂改造研究[J]. 煤炭技术,2017,36(2):185−186. BIAN Liheng,XIONG Xianyue,WANG Weibin. Research on stimulation of low permeability soft coal formation[J]. Coal Technology,2017,36(2):185−186.
    [32] 朱宝存,唐书恒,张佳赞. 煤岩与顶底板岩石力学性质及对煤储层压裂的影响[J]. 煤炭学报,2009,34(6):756−760. ZHU Baocun,TANG Shuheng,ZHANG Jiazan. Mechanics characteristics of coal and its roof and floor rock and the effects of hydraulic fracturing on coal reservoir[J]. Journal of China Coal Society,2009,34(6):756−760. doi: 10.3321/j.issn:0253-9993.2009.06.008
    [33] 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J/OL]. 煤田地质与勘探, 2022: 1–15[2021−12−22].https://kns.cnki.net/kcms/detail/61.1155.p.20211220.1747.006.html.

    XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient development of coalbed methane in China[J/OL]. Coal Geology & Exploration, 2022: 1–15[2021–12–22].https://kns.cnki.net/kcms/detail/61.1155.p.20211220.1747.006.html.
    [34] 付玉通,张伟,李永臣,等. 鄂东南地区深部煤层气煤体结构测井评价研究[J]. 中国煤炭,2017,43(9):31−34. FU Yutong,ZHANG Wei,LI Yongchen,et al. Logging evaluation research on the structure of deep coal body with CBM in the southeast of Hubei Province[J]. China Coal,2017,43(9):31−34. doi: 10.3969/j.issn.1006-530X.2017.09.006
    [35] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性:煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14−23. QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas–bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14−23.
    [36] 康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438. KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal−bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438. doi: 10.7623/syxb201912002
    [37] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439. YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
    [38] 贾承造,庞雄奇,宋岩. 论非常规油气成藏机理:油气自封闭作用与分子间作用力[J]. 石油勘探与开发,2021,48(3):437−452. JIA Chengzao,PANG Xiongqi,SONG Yan. The mechanism of unconventional hydrocarbon formation:Hydrocarbon self–containment and intermolecular forces[J]. Petroleum Exploration and Development,2021,48(3):437−452.
    [39] 邹才能,杨智,张国生,等. 常规–非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,2014,41(1):14−27. ZOU Caineng,YANG Zhi,ZHANG Guosheng,et al. Conventional and unconventional petroleum“orderly accumulation”:Concept and practical significance[J]. Petroleum Exploration and Development,2014,41(1):14−27. doi: 10.11698/PED.2014.01.02
    [40] PANG Xiongqi,LIU Keyu,MA Zhongzhen,et al. Dynamic field division of hydrocarbon migration,accumulation and hydrocarbon enrichment rules in sedimentary basins[J]. Acta Geologica Sinica(English Edition),2012,86(6):1559−1592. doi: 10.1111/1755-6724.12023
    [41] PANG Xiongqi,JIA Chengzao,WANG Wenyang,et al. Buoyance–driven hydrocarbon accumulation depth and its implication for unconventional resource prediction[J]. Geoscience Frontiers,2021,12(4):101133. doi: 10.1016/j.gsf.2020.11.019
    [42] 焦方正. 非常规油气之“非常规”再认识[J]. 石油勘探与开发,2019,46(5):803−810. JIAO Fangzheng. Re–recognition of“unconventional”in unconventional oil and gas[J]. Petroleum Exploration and Development,2019,46(5):803−810.
    [43] 田文广,汤达祯,王志丽,等. 鄂尔多斯盆地东北缘保德地区煤层气成因[J]. 高校地质学报,2012,18(3):479−484. TIAN Wenguang,TANG Dazhen,WANG Zhili,et al. Origin of coal−bed methane in Baode,northeastern Ordos Basin[J]. Geological Journal of China Universities,2012,18(3):479−484.
    [44] 杨秀春,毛建设,林文姬,等. 保德区块煤层气勘探历程与启示[J]. 新疆石油地质,2021,42(3):381−388. YANG Xiuchun,MAO Jianshe,LIN Wenji,et al. Exploration history and enlightenment of coalbed methane in Baode block[J]. Xinjiang Petroleum Geology,2021,42(3):381−388.
    [45] 周加佳. 碎软低渗煤层煤层气直井间接压裂技术及应用实践[J]. 煤田地质与勘探,2019,47(4):6−11. ZHOU Jiajia. Technology and application of indirect fracturing in CBM vertical well of broken and soft coal seam with low permeability[J]. Coal Geology & Exploration,2019,47(4):6−11. doi: 10.3969/j.issn.1001-1986.2019.04.002
    [46] HOWER T. Performance of the Powder River coal seams, Wyodak and big George[C]//IPAMS Energy Conference. Denver: 2003: 1019–1025.
    [47] PALMER I D, FRYAR R T, TUMINO K A, et al. Comparison between gel−fracture and water−fracture stimulations in the Black Warrior Basin[C]//Coal Bed Methane Symposium. Tuscaloosa, Alabama: 1991: 233–242.
    [48] 张金才,尹尚先. 页岩油气与煤层气开发的岩石力学与压裂关 键技术[J]. 煤炭学报,2014,39(8):1691−1699. ZHANG Jincai,YIN Shangxian. Some technologies of rock mechanics applications and hydraulic fracturing in shale oil,shale gas and coalbed methane[J]. Journal of China Coal Society,2014,39(8):1691−1699.
    [49] 俞绍诚. 水力压裂技术手册[M]. 北京: 石油工业出版社, 2010.
    [50] MCLENNAN J D. Spalling and the development of a hydraulic fracturing strategy for coal[J]. Quarterly Review of Methane from Coal Seams Technology for Coal,1991,8(2):25−27.
    [51] 杨宇,林璠,曹煜,等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探,2016,44(3):46−50. YANG Yu,LIN Fan,CAO Yu,et al. Pilot geological analysis of indirect fracturing in vertical CBM well[J]. Coal Geology & Exploration,2016,44(3):46−50. doi: 10.3969/j.issn.1001-1986.2016.03.009
    [52] 唐书恒,朱宝存,颜志丰. 地应力对煤层气井水力压裂裂缝发育的影响[J]. 煤炭学报,2011,36(1):65−69. TANG Shuheng,ZHU Baocun,YAN Zhifeng. Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J]. Journal of China Coal Society,2011,36(1):65−69.
    [53] 熊先钺,边利恒,王伟,等. 韩城区块煤储层间接压裂地质主控因素研究[J]. 煤炭科学技术,2017,45(6):189−195. XIONG Xianyue,BIAN Liheng,WANG Wei,et al. Research on main geological controlling factors of coal reservoir indirect fracturing in Hancheng Block[J]. Coal Science and Technology,2017,45(6):189−195.
    [54] 赵金洲,任岚,蒋廷学,等. 中国页岩气压裂十年:回顾与展望[J]. 天然气工业,2021,41(8):121−142. ZHAO Jinzhou,REN Lan,JIANG Tingxue,et al. Ten years of shale fracturing in China:Review and prospect[J]. Natural Gas Industry,2021,41(8):121−142. doi: 10.3787/j.issn.1000-0976.2021.08.012
    [55] CHONG K K, GRIESER W V, PASSMAN A, et al. A completions guide book to shale–play development: A review of successful approaches towards shale–play stimulation in the last two decades[C]//Canadian Unconventional Resources and International Petroleum Conference. Calgary: SPE–133874–MS, 2010.
    [56] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129. YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro–fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129. doi: 10.3969/j.issn.1001-1986.2021.01.012
    [57] 陈杨,姚艳斌,崔金榜,等. 郑庄区块煤储层水力压裂裂缝扩展地质因素分析[J]. 煤炭科学技术,2014,42(7):98−102. CHEN Yang,YAO Yanbin,CUI Jinbang,et al. Analysis on geological control factors of hydraulic fracture extension of coal reservoirs in Zhengzhuang block[J]. Coal Science and Technology,2014,42(7):98−102.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  8
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-02-28
  • 刊出日期:  2022-03-25
  • 网络出版日期:  2022-03-30

目录

    /

    返回文章
    返回