大宁−吉县区块深层煤层气生产特征与开发技术对策

聂志宏, 时小松, 孙伟, 闫霞, 黄红星, 刘莹, 冯延青

聂志宏,时小松,孙伟,等. 大宁−吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818
引用本文: 聂志宏,时小松,孙伟,等. 大宁−吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818
NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818
Citation: NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200. DOI: 10.12363/issn.1001-1986.21.12.0818

 

大宁−吉县区块深层煤层气生产特征与开发技术对策

基金项目: 中石油前瞻性基础性技术攻关项目(2021DJ2301);中石油基础性研究项目(2019E-2501)
详细信息
    作者简介:

    聂志宏,1983年生,男,山西朔州人,硕士,高级工程师,从事煤层气开发地质研究. E-mail:nzh@petrochina.com.cn

    通讯作者:

    时小松,1988年生,男,四川广安人,硕士,工程师,从事煤层气开发地质研究. E-mail:sxs@petrochina.com.cn

  • 中图分类号: P618.11

Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures

  • 摘要: 鄂尔多斯盆地埋深超过2 000 m的深层煤层气资源丰富,是煤层气勘探开发重要领域,鄂尔多斯盆地东缘大宁−吉县区块开展了一批深层煤层气工艺试验,初步取得一定效果,但规模效益开发主体技术亟待攻关。基于实验分析、生产数据和裂缝监测等资料,通过对大宁−吉县区块深层煤层气储层特征、生产动态和压裂改造效果开展评价,分析了深层煤层气生产特征并提出开发技术对策。研究认为:(1) 深层煤储层具有“低渗、高含气、高含气饱和度、富含游离气”的特征;(2) 深层煤层气产能主要受资源富集、微构造和有效改造规模控制,在正向微构造发育区,资源越富集、加液强度越大、加砂强度越大,越有利于扩大供气能力和提高单井产量;(3) 深层煤层气生产井呈现出以游离气产出为主的高产期、游离气和吸附气共同产出的稳产及递减期和以吸附气产出为主的低产期三段式产出特征。基于上述认识,提出了深层煤层气开发技术对策,实施的D6-7P1井取得较好生产效果,证实在有利区实施超大规模加砂压裂可有效提高深层煤层气产能。
    Abstract: The Ordos Basin is rich in deep coalbed methane resources with a depth of more than 2 000 m, which is an important coalbed methane exploration and development area. A number of tests on deep coalbed methane have been carried out in Daning-Jixian Block, and preliminary results have been achieved, but the main technology of scale-efficient development needs to be studied. On the basis of the analysis of experimental data, production data and fracture monitoring data, and by the evaluation of the characteristics, production performance and fracturing effect of deep coalbed methane reservoirs in Daning-Jixian Block, the production characteristics of deep coalbed methane are analyzed and development countermeasures are proposed. The research indicates that ① Deep coal reservoirs have the characteristics of low permeability, high gas content, high gas saturation and rich free gas. ② The productivity of deep coalbed methane is mainly controlled by resource enrichment, micro-structure and effective fracturing scale. In the positive micro-structure development area, the richer the resources, the greater the fluid strength, and the greater the sand strength, the more conducive to expand the gas supply capacity and improve the single well production. ③ The production wells of deep coalbed methane are characterized by three-stage production: the high production period dominated by free gas production, the stable and decline period where free gas and adsorbed gas are produced together, and the low production period dominated by adsorbed gas production. The technology countermeasures for deep coalbed methane development are put forward based on the above, and the implementation of D6-7P1 well has achieved good production effect, which confirms that the implementation of super large-scale sand fracturing in favorable areas can effectively improve the production capacity of deep coalbed methane.
  • 图  1   大宁−吉县区块构造带分布

    Fig.  1   Distribution map of the structural belt of Daning-Jixian Block

    图  2   8号煤层等温吸附曲线

    Fig.  2   Isothermal adsorption curve of the No.8 coal seam

    图  3   大宁−吉县区块深层煤层气平均生产曲线

    Fig.  3   Average production curve of deep coalbed methane in Daning-Jixian Block

    图  4   深层煤层气稳产期累产气量与煤层厚度、含气量及资源丰度的关系

    Fig.  4   Relationship between cumulative gas production and coal seam thickness, gas content and resource abundance during stable production period of deep coalbed methane

    图  5   深层煤层气日产气量与资源丰度的关系

    Fig.  5   Relationship between daily gas production and resource abundance of deep coalbed methane

    图  6   加液强度与日产气量散点图

    Fig.  6   Scatter plot of liquid addition intensity and daily gas production

    图  7   加砂强度与日产气量散点图

    Fig.  7   Scatter plot of sand strength and daily gas

    图  8   D3-7X2井返排及生产曲线

    Fig.  8   D3-7X2 well flowback and production curves

    图  9   D6-7P1井返排及生产曲线

    Fig.  9   D6-7P1 well flowback and production curves

    图  10   深层煤层气井预测典型生产曲线

    Fig.  10   Prediction of typical production curves for deep coalbed methane wells

    表  1   大宁−吉县地区深层8号煤等温吸附测试数据

    Table  1   Isothermal adsorption test data of the No. 8 deep coal seam in Daning-Jixian Block

    样品号储层
    压力/
    MPa
    Langmuir
    体积/
    (m3·t−1)
    Langmuir
    压力/
    MPa
    实测含气量/
    (m3·t−1)
    理论含气量/
    (m3·t−1)
    含气
    饱和度/%
    取心
    方式
    P22-Y1 19.82 28.53 2.86 24.68 24.93 99.01 常规钻杆取心
    P22-Y2 19.85 24.94 3.70 20.61 21.02 98.04
    D3-4-Y1 20.39 27.09 2.91 23.45 23.72 98.88
    D3-4-Y2 20.42 27.77 3.15 23.81 24.06 98.97
    D3-4-Y3 20.44 27.93 2.70 24.38 24.67 98.82
    P19-Y1 19.64 25.72 2.55 19.82 22.76 87.07
    H12-Y1 19.87 35.47 4.02 29.59 29.50 100.00
    P20-Y1 19.76
    平均 20.06 28.21 3.13 23.26 24.38 97.26
    P20-Y2 20.47 31.47 3.21 29.89 27.20 109.89 保压取心
    P20-Y3 20.47 28.65 3.25 22.87 24.73 92.48
    P20-Y4 20.48 32.83 3.46 23.72 28.09 84.44
    P20-Y5 20.49 29.39 3.22 25.11 25.40 98.86
    平均 20.48 30.59 3.29 25.40 26.36 96.42
    下载: 导出CSV

    表  2   大宁−吉县地区深层8号煤总含气数据

    Table  2   Total gas content data of the No. 8 deep coal seam in Daning Jixian Block

    样品号质量/
    g
    密度/
    (g·cm−3)
    体积/
    cm3
    孔隙率/
    %
    含水饱
    和度/
    %
    原始天然气
    体积系数Bg
    游离气含量/

    (m3·t−1)
    实测含气
    量/
    (m3·t−1)
    总含气量/

    (m3·t−1)
    P20-Y318501.381340.586.817.740.00375112.1422.8735.01
    P20-Y419501.361433.825.9510.030.00375110.4923.7234.21
    P20-Y517951.351329.636.1313.500.00375110.4725.1135.58
    下载: 导出CSV

    表  3   8号煤渗透率测试结果

    Table  3   Permeability test results for the No. 8 coal seam

    井号样品深度/m渗透率/10−3 μm2裂隙发育情况测试方法
    D40 1866.00 0.053 注入/压降测试
    D7-5 2233.00 0.054
    P19 2117.62 0.004 裂隙不发育 克氏渗透率
    H12 2141.72 0.030
    H13 2254.17 0.271
    2257.32 0.008
    H15 2405.30 0.018
    2409.94 0.005
    H3 2168.00 0.009
    H4 2167.00 0.013
    平均 2202.01 0.047
    P22-1 2141.00 1.142 裂隙发育
    H7 2283.16 1.401
    H9 2336.93 1.749
    H2 2230.18 0.318
    平均 2247.82 1.153
    下载: 导出CSV

    表  4   深层煤层气井压裂裂缝监测结果

    Table  4   Monitoring results of fracturing fractures in deep coalbed methane wells

    井号缝长/m缝宽/m改造面积/m2
    D2-2AX2 310 100 24 335
    D52 310 160 38 936
    D43 350 140 38 465
    D3-7X2 320 80 20 096
    平均 322.5 120 30 458
    下载: 导出CSV

    表  5   深层煤层气井EUR预测

    Table  5   EUR prediction of deep coalbed methane wells

    井号2021年11月底
    日产气量/m3
    累产气量/
    104 m3
    单井EUR/
    104 m3
    D3-7X2 1 309 199 311
    D4-8X1 632 46 84
    D52 1 529 85 269
    D6-10X1 2 394 180 496
    D7-5 4 350 199 817
    平均 1 760.6 115 395
    下载: 导出CSV
  • [1] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68. GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.
    [2] 郑民,李建忠,吴晓智,等. 我国主要含油气盆地油气资源潜力及未来重点勘探领域[J]. 地球科学,2019,44(3):833−847. ZHENG Min,LI Jianzhong,WU Xiaozhi,et al. Potential of oil and natural gas resources of main hydrocarbon–bearing basins and key exploration fields in China[J]. Earth Science,2019,44(3):833−847.
    [3] 孙德强,高文凯,郑军卫,等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源,2021,43(1):33−38. SUN Deqiang,GAO Wenkai,ZHENG Junwei,et al. Bottlenecks restricting the development of coalbed methane in China and policy recommendations[J]. Energy of China,2021,43(1):33−38.
    [4] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604. ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
    [5] 穆福元,王红岩,吴京桐,等. 中国煤层气开发实践与建议[J]. 天然气工业,2018,38(9):55−60. MU Fuyuan,WANG Hongyan,WU Jingtong,et al. Practice and suggestions on CBM development in China[J]. Natural Gas Industry,2018,38(9):55−60. DOI: 10.3787/j.issn.1000-0976.2018.09.007
    [6] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118. ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118. DOI: 10.7623/syxb202101010
    [7] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439. YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
    [8] 王丹,张盖霞,张颂颂,等. 临汾致密砂岩气勘探区储层沉积特征研究[J]. 特种油气藏,2017,24(6):39−43. WANG Dan,ZHANG Gaixia,ZHANG Songsong,et al. Research on reservoir sedimentary characteristics in exploration area of tight sandstone gas in Linfen[J]. Special Oil & Gas Reservoirs,2017,24(6):39−43. DOI: 10.3969/j.issn.1006-6535.2017.06.008
    [9] 匡立春,董大忠,何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435−446. KUANG Lichun,DONG Dazhong,HE Wenyuan,et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin,NW China[J]. Petroleum Exploration and Development,2020,47(3):435−446.
    [10] 康永尚,王金,姜杉钰,等. 量化指标在煤层气开发潜力定量评价中的应用[J]. 石油学报,2017,38(6):677−686. KANG Yongshang,WANG Jin,JIANG Shanyu,et al. Application of quantitative indexes in quantitative evaluation of coalbed methane development potential[J]. Acta Petrolei Sinica,2017,38(6):677−686. DOI: 10.7623/syxb201706007
    [11] 孟艳军,汤达祯,许浩,等. 煤层气解吸阶段划分方法及其意义[J]. 石油勘探与开发,2014,41(5):612−617. MENG Yanjun,TANG Dazhen,XU Hao,et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development,2014,41(5):612−617. DOI: 10.11698/PED.2014.05.14
    [12] 陈贞龙. 解吸阶段划分对延川南煤层气田开发的指示意义[J]. 油气藏评价与开发,2017,7(5):80−84. CHEN Zhenlong. The significance of desorption phase division on the development of coalbed methane fields in southern Yanchuan County[J]. Reservoir Evaluation and Development,2017,7(5):80−84. DOI: 10.3969/j.issn.2095-1426.2017.05.015
    [13] 秦勇,郑长东,王博洋,等. 基于等温吸附曲线的煤储层产气潜力定量评价:以黔北地区长岗矿区为例[J]. 天然气工业,2018,38(9):40−47. QIN Yong,ZHENG Changdong,WANG Boyang,et al. Quantitative evaluation on the gas production potential of coal reservoirs based on isothermal adsorption curves:A case study of the Changgang Field,northern Guizhou,China[J]. Natural Gas Industry,2018,38(9):40−47. DOI: 10.3787/j.issn.1000-0976.2018.09.005
    [14] 李安启,张鑫,钟小刚,等. 煤岩吸附曲线在煤层气勘探开发中的应用[J]. 天然气工业,2008,28(3):80−82. LI Anqi,ZHANG Xin,ZHONG Xiaogang,et al. Application of coal adsorption curve to CBM exploration and development[J]. Natural Gas Industry,2008,28(3):80−82. DOI: 10.3787/j.issn.1000-0976.2008.03.025
    [15] 李小锋,范萍,吴优,等. 苏里格致密砂岩气藏废弃地层压力研究[J]. 中国科技论文,2019,14(8):932−936. LI Xiaofeng,FAN Ping,WU You,et al. Study on abandonment formation pressure of Sulige tight sandstone gas reservoirs[J]. China Sciencepaper,2019,14(8):932−936. DOI: 10.3969/j.issn.2095-2783.2019.08.020
    [16] 徐凤银, 闫霞, 林振盘, 等. 我国煤层气高效开发关键技术研究进展与发展方向[J/OL]. 煤田地质与勘探, 2022: 1–15[2022–02–15].

    XU Fengyin, YAN Xia, LIN Zhenpan, et al. Research progress and development direction of key technologies for efficient development of coalbed methane in China[J/OL]. Coal Geology & Exploration, 2022: 1–15[2022–02–15].

    [17] 李曙光, 王红娜, 徐博瑞, 等. 大宁–吉县区块深层煤层气井酸化压裂产气效果影响因素分析[J/OL]. 煤田地质与勘探, 2022: 1–8[2022–02–15].

    LI Shuguang, WANG Hongna, XU Borui, et al. Analysis of influencing factors on gas production effect of acid fractured CBM wells in deep coal seam of Daning–Jixian Block[J/OL]. Coal Geology & Exploration, 2022: 1–8[2022–02–15].

    [18] 张士诚,郭天魁,周彤,等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报,2014,35(3):496−503. ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica,2014,35(3):496−503. DOI: 10.7623/syxb201403011
    [19] 王永辉,卢拥军,李永平,等. 非常规储层压裂改造技术进展及应用[J]. 石油学报,2012,33(增刊1):149−158. WANG Yonghui,LU Yongjun,LI Yongping,et al. Progress and application of hydraulic fracturing technology in unconventional reservoir[J]. Acta Petrolei Sinica,2012,33(Sup.1):149−158.
    [20] 叶建平,杨兆中,夏日桂,等. 深煤层水力波及压裂技术及其在沁南地区的应用[J]. 天然气工业,2017,37(10):35−45. YE Jianping,YANG Zhaozhong,XIA Rigui,et al. Synchronous hydraulic conformance fracturing technology used for deep coal beds and its field application in the southern Qinshui Basin[J]. Natural Gas Industry,2017,37(10):35−45. DOI: 10.3787/j.issn.1000-0976.2017.10.005
    [21] 李亚洲,李勇明,罗攀,等. 页岩气渗流机理与产能研究[J]. 断块油气田,2013,20(2):186−190. LI Yazhou,LI Yongming,LUO Pan,et al. Study on seepage mechanism and productivity of shale gas[J]. Fault–Block Oil & Gas Field,2013,20(2):186−190.
    [22] 何希鹏,张培先,房大志,等. 渝东南彭水—武隆地区常压页岩气生产特征[J]. 油气地质与采收率,2018,25(5):72−79. HE Xipeng,ZHANG Peixian,FANG Dazhi,et al. Production characteristics of normal pressure shale gas in Pengshui–Wulong area,southeast Chongqing[J]. Petroleum Geology and Recovery Efficiency,2018,25(5):72−79.
    [23] 刘若冰. 中国首个大型页岩气田典型特征[J]. 天然气地球科学,2015,26(8):1488−1498. LIU Ruobing. Typical features of the first giant shale gas field in China[J]. Natural Gas Geoscience,2015,26(8):1488−1498.
    [24] 位云生,贾爱林,何东博,等. 中国页岩气与致密气开发特征与开发技术异同[J]. 天然气工业,2017,37(11):43−52. WEI Yunsheng,JIA Ailin,HE Dongbo,et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China[J]. Natural Gas Industry,2017,37(11):43−52. DOI: 10.3787/j.issn.1000-0976.2017.11.006
    [25] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781−1796. ZOU Caineng,ZHAO Qun,DONG Dazhong,et al. Geological characteristics,main challenges and future prospect of shale gas[J]. Natural Gas Geoscience,2017,28(12):1781−1796.
    [26] 王国勇. 苏里格气田水平井整体开发技术优势与条件制约—以苏53区块为例[J]. 特种油气藏,2012,19(1):62−65. WANG Guoyong. Technical advantages and limitations of integrated development of Sulige gas field with horizontal wells:A case study with Block Su53[J]. Special Oil & Gas Reservoirs,2012,19(1):62−65. DOI: 10.3969/j.issn.1006-6535.2012.01.014
  • 期刊类型引用(7)

    1. 吴国庆. 反射槽波探测法在煤层褶曲与断层识别中的研究与应用. 煤田地质与勘探. 2024(09): 154-165 . 本站查看
    2. 常锁亮,刘晶,张生,石晓红,刘最亮,杨智华. 构造煤分布的地质控制及其地震地质一体化预测方法——以沁水盆地阳泉新景矿3号煤层研究为例. 石油物探. 2023(01): 43-55 . 百度学术
    3. 吴国庆,马彦龙. 地质透明化工作面内多种异常体的槽波解释方法研究. 煤炭科学技术. 2023(05): 149-160 . 百度学术
    4. 范徳元,吴国庆,马彦龙. 槽波技术在阳泉矿区地质异常体探测中的应用研究. 煤田地质与勘探. 2021(04): 33-39 . 本站查看
    5. 张建国,韩晟,张聪,陈彦君. 基于聚煤环境分区的煤体结构测井判别及应用——以沁水盆地南部马必东地区为例. 煤田地质与勘探. 2021(04): 114-122 . 本站查看
    6. 张刚,常锁亮,王瑞瑞,刘波,曾博,刘最亮,杨智华. 基于地震沉积学的沉积相精细刻画:以山西寺家庄矿15号煤层聚煤前后为例. 中国煤炭地质. 2021(10): 125-133+154 . 百度学术
    7. 汪北方,梁冰,张晶,迟海波,黄普江. 红山煤矿石门揭突出煤层综合防突技术. 煤田地质与勘探. 2019(05): 86-93 . 本站查看

    其他类型引用(2)

图(10)  /  表(5)
计量
  • 文章访问数:  860
  • HTML全文浏览量:  95
  • PDF下载量:  243
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-02-15
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-02-25
  • 发布日期:  2022-02-28

目录

    /

    返回文章
    返回