留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤储层水力压裂裂缝中支撑剂特征及研究意义

王生维 熊章凯 吕帅锋 高超

王生维,熊章凯,吕帅锋,等. 煤储层水力压裂裂缝中支撑剂特征及研究意义[J]. 煤田地质与勘探,2022,50(3):137−145 doi: 10.12363/issn.1001-1986.21.12.0813
引用本文: 王生维,熊章凯,吕帅锋,等. 煤储层水力压裂裂缝中支撑剂特征及研究意义[J]. 煤田地质与勘探,2022,50(3):137−145 doi: 10.12363/issn.1001-1986.21.12.0813
WANG Shengwei,XIONG Zhangkai,LYU Shuaifeng,et al. Characteristics and significance of proppant in hydraulic fractures in coal reservoirs[J]. Coal Geology & Exploration,2022,50(3):137−145 doi: 10.12363/issn.1001-1986.21.12.0813
Citation: WANG Shengwei,XIONG Zhangkai,LYU Shuaifeng,et al. Characteristics and significance of proppant in hydraulic fractures in coal reservoirs[J]. Coal Geology & Exploration,2022,50(3):137−145 doi: 10.12363/issn.1001-1986.21.12.0813

煤储层水力压裂裂缝中支撑剂特征及研究意义

doi: 10.12363/issn.1001-1986.21.12.0813
基金项目: 国家自然科学基金项目(42102220);山西省科技重大专项项目(20201102002,20181101013)
详细信息
    第一作者:

    王生维,1956年生,男,内蒙古呼和浩特人,教授,博士生导师,从事煤层气勘探与开发研究工作. E-mail:swwang@cug.edu.cn

  • 中图分类号: P618.11

Characteristics and significance of proppant in hydraulic fractures in coal reservoirs

  • 摘要: 煤层水力压裂后支撑剂的展布形态及内部特征在很大程度上决定压裂效果的优劣。以煤矿井下巷道中揭露的煤层气井压裂裂缝内的支撑剂为研究对象,重点观察并分析支撑剂的形貌和堆积特征及其与堆积过程的关系。再以压裂裂缝典型部位获取的支撑剂为实例,描述支撑剂的形貌与堆积特征,还原支撑剂的堆积过程。结果表明:在水平缝内,距井筒距离增加,支撑剂粒径逐渐变细,其中软煤带内的支撑剂颗粒在沉积前经历了强烈的碰撞和复杂的水动力环境,并形成支撑剂带-支撑剂与煤粉混合带-煤粉带的三带铺砂特征;裂缝延伸形式转变易导致支撑剂提前沉积,不利于裂缝延伸;不同裂缝部位内支撑剂颗粒的分选性、完整性、煤粉附着状况以及裂缝壁面痕迹往往不同,对支撑剂的堆积过程和压裂流体的流动特征具有指示意义。研究成果为仿真模拟实验的参数设定和生产实践提供科学依据。同时,对现场同类型压裂施工设计及压裂效果预测具有一定的借鉴意义。

     

  • 图  1  水力压裂施工待用的石英砂支撑剂

    Fig. 1  Quartz sand proppant for hydraulic fracturing

    图  2  支撑剂分选性

    Fig. 2  Sorting property of the proppant

    图  3  支撑剂颗粒表面撞坑

    Fig. 3  Craters on the surface of the proppant

    图  4  煤粉附着特征

    Fig. 4  Adhesion characteristics of the pulverized coal

    图  5  滑痕

    Fig. 5  Slide mark

    图  6  1号煤层气井压裂裂缝在巷道壁面上的展布

    Fig. 6  Distribution of hydraulic fractures of No.1 CBM well on the roadway wall

    图  7  1号煤层气井支撑剂实景

    Fig. 7  Realistic scene of the proppant of No.1 CBM well

    图  8  1号煤层气井压裂施工曲线

    Fig. 8  Fracturing construction curve of No.1 CBM well

    图  9  水平缝内各取样点支撑剂颗粒

    Fig. 9  Proppant particles at each sampling point in the horizontal hydraulic fracture

    图  10  水平缝内各取样点支撑剂颗粒粒径分布

    Fig. 10  Particle size distribution of the proppant at each sampling point in the horizontal hydraulic fracture

    图  11  软煤条带煤粉和支撑剂颗粒

    Fig. 11  Pulverized coal and proppant particles in the soft coal zone

    图  12  煤粉充填孔隙空间

    Fig. 12  Pore space filled with pulverized coal

    图  13  T形缝区域示意图

    Fig. 13  Diagram of T shape fracture area

    图  14  水平缝在软煤带内延伸过程

    Fig. 14  Extension process of the horizontal fracture in the soft coal zone

    图  15  煤样A

    Fig. 15  Coal sample A

    图  16  煤样B

    Fig. 16  Coal sample B

    图  17  2号煤层气井压裂裂缝延展

    Fig. 17  Fracture surface extension of No.2 CBM well

    图  18  巷道壁面1上垂直缝

    Fig. 18  Vertical fracture on wall 1

    图  19  2号煤层气井压裂施工曲线

    Fig. 19  Fracturing construction curves of No.2 CBM well

    图  20  大型转向垂直缝内支撑剂

    Fig. 20  Proppant in the large steering vertical fracture

    图  21  大粒径的团聚集合体

    Fig. 21  Large agglomerated particles

    表  1  水平缝内各取样点支撑剂颗粒粒径分布

    Table  1  Particle size distribution of the proppant at each sampling point in the horizontal hydraulic fracture

    取样位置总颗粒数d>1.7 mm1.7 mm≤d≤1.18 mmd<1.18 mm
    水泥环7713613
    取样点18713713
    取样点2408293
    取样点3812772
    下载: 导出CSV
  • [1] 张双斌,苏现波,郭红玉. 煤储层水力压裂支撑剂的优选实验研究[J]. 煤田地质与勘探,2016,44(1):51−55. ZHANG Shuangbin,SU Xianbo,GUO Hongyu. Experimental optimization of proppant for hydraulic fracturing in coal reservoir[J]. Coal Geology & Exploration,2016,44(1):51−55. doi: 10.3969/j.issn.1001-1986.2016.01.010
    [2] 光新军,王敏生,韩福伟,等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液,2019,36(5):529−533. GUANG Xinjun,WANG Minsheng,HAN Fuwei,et al. Proppants for fracturing fluids:New progress made and direction of future development[J]. Drilling Fluid & Completion Fluid,2019,36(5):529−533. doi: 10.3969/j.issn.1001-5620.2019.05.001
    [3] 郑新权,王欣,张福祥,等. 国内石英砂支撑剂评价及砂源本地化研究进展与前景展望[J]. 中国石油勘探,2021,26(1):131−137. ZHENG Xinquan,WANG Xin,ZHANG Fuxiang,et al. Domestic sand proppant evaluation and research progress of sand source localization and its prospects[J]. China Petroleum Exploration,2021,26(1):131−137.
    [4] 秦梅,郝惠兰,田玉明,等. 基于煤层气井用陶粒支撑剂的制备[J]. 硅酸盐通报,2019,38(10):3355−3359. QIN Mei,HAO Huilan,TIAN Yuming,et al. Preparation of ceramic proppant based on coalbed methane well[J]. Bulletin of the Chinese Ceramic Society,2019,38(10):3355−3359.
    [5] 杜杰,唐一博,王俊峰,等. 煤层压裂支撑剂的制备及性能研究[J]. 煤矿安全,2018,49(10):5−8. DU Jie,TANG Yibo,WANG Junfeng,et al. Preparation and mechanisms of proppant for coal bed fracturing[J]. Safety in Coal Mines,2018,49(10):5−8.
    [6] 成巧耘,李波波,李建华,等. 考虑支撑剂压实和嵌入作用的滑脱效应及渗流机制[J]. 煤田地质与勘探,2021,49(5):88−97. CHENG Qiaoyun,LI Bobo,LI Jianhua,et al. Slippage effect and the seepage mechanism considering the compaction and embedding action of proppant[J]. Coal Geology & Exploration,2021,49(5):88−97.
    [7] 张鹏. 煤层气井压裂液流动和支撑剂分布规律研究[D]. 青岛: 中国石油大学(华东), 2011.

    ZHANG Peng. Fracturing fluid flow and proppant distribution laws in CBM well[D]. Qingdao: China University of Petroleum(East China), 2011.
    [8] 黄炳香,李浩泽,程庆迎,等. 煤层压裂裂缝内支撑剂的压嵌特性[J]. 天然气工业,2019,39(4):48−54. HUANG Bingxiang,LI Haoze,CHENG Qingying,et al. Compaction and embedment characteristics of proppant in hydraulic fractures of coal seams[J]. Natural Gas Industry,2019,39(4):48−54. doi: 10.3787/j.issn.1000-0976.2019.04.006
    [9] 唐方璇. 松软煤层支撑裂缝导流能力影响因素研究[D]. 成都: 西南石油大学, 2018.

    TANG Fangxuan. Study on influence factors of fracture proppants conductivity in soft coal seam[D]. Chengdu: Southwest Petroleum University, 2018.
    [10] AHAMED M A A,PERERA M S A,ELSWORTH D,et al. Effective application of proppants during the hydraulic fracturing of coal seam gas reservoirs:Implications from laboratory testings of propped and unpropped coal fractures[J]. Fuel,2021,304:121394. doi: 10.1016/j.fuel.2021.121394
    [11] 关舒文,胡胜勇,张惜图,等. 水力压裂裂缝内支撑剂颗粒空隙率分布的形成机制[J]. 煤矿安全,2021,52(3):14−18. GUAN Shuwen,HU Shengyong,ZHANG Xitu,et al. Formation mechanism of proppant particle voidage distribution in hydraulic fracturing fractures[J]. Safety in Coal Mines,2021,52(3):14−18.
    [12] 潘林华,王海波,贺甲元,等. 水力压裂支撑剂运移与展布模拟研究进展[J]. 天然气工业,2020,40(10):54−65. PAN Linhua,WANG Haibo,HE Jiayuan,et al. Progress of simulation study on the migration and distribution of proppants in hydraulic fractures[J]. Natural Gas Industry,2020,40(10):54−65. doi: 10.3787/j.issn.1000-0976.2020.10.007
    [13] YANG Shangyu,WU Xingru,HAN Lihong,et al. Migration of variable density proppant particles in hydraulic fracture in coal–bed methane reservoir[J]. Journal of Natural Gas Science and Engineering,2016,36:662−668. doi: 10.1016/j.jngse.2016.11.009
    [14] 肖宇航,王生维,吕帅锋,等. 寺河矿区压裂煤储层中裂缝与流动通道模型[J]. 中国矿业大学学报,2018,47(6):1305−1312. XIAO Yuhang,WANG Shengwei,LYU Shuaifeng,et al. Fracture and flow channel model in fractured coal reservoir of Sihe mining area[J]. Journal of China University of Mining & Technology,2018,47(6):1305−1312.
    [15] 吕帅锋,王生维,张晓飞,等. 煤层气钻井固相物污染特征及评价[J]. 煤田地质与勘探,2017,45(1):162−167. LYU Shuaifeng,WANG Shengwei,ZHANG Xiaofei,et al. Pollution characteristics and evaluation of solid–phase materials in CBM drilling[J]. Coal Geology & Exploration,2017,45(1):162−167. doi: 10.3969/j.issn.1001-1986.2017.01.031
    [16] 吕帅锋. 煤层大型水力压裂导流通道特征及削减高阻体研究[D]. 武汉: 中国地质大学(武汉), 2019.

    LYU Shuaifeng. Study on diversion channel characteristics and reducing high resistance body during large–scale hydraulic fracturing in coal seam[D]. Wuhan: China University of Geosciences(Wuhan), 2019.
    [17] 陈立超. 沁水盆地南部煤储层压裂裂缝延展机制及充填模式[D]. 武汉: 中国地质大学(武汉), 2016.

    CHEN Lichao. Propagation mechanisms and filling patterns of hydraulic fracturing cracks of coalbed methane reservoir in southern Qinshui Basin[D]. Wuhan: China University of Geosciences(Wuhan), 2016.
    [18] 何俊铧,陈立超,胡奇,等. 不同原生裂缝壁面特征对煤储层压裂造缝影响的对比分析[J]. 煤炭学报,2014,39(9):1868−1872. HE Junhua,CHEN Lichao,HU Qi,et al. Comparative analysis for the impact of different natural fracture surface characteristics on CBM fracturing[J]. Journal of China Coal Society,2014,39(9):1868−1872.
    [19] LI Rui,WANG Shengwei,LYU Shuaifeng,et al. Geometry and filling features of hydraulic fractures in coalbed methane reservoirs based on subsurface observations[J]. Rock Mechanics and Rock Engineering,2020,53:2485−2492. doi: 10.1007/s00603-020-02046-x
    [20] 张潦源,曲占庆,吕明锟,等. 不同支撑剂组合对复杂裂缝支撑效果的影响[J]. 断块油气田,2021,28(2):278−283. ZHANG Liaoyuan,QU Zhanqing,LYU Mingkun,et al. Support effect of different particle proppant combinations on complex fractures[J]. Fault–Block Oil & Gas Field,2021,28(2):278−283.
    [21] QU Hai,TANG Shimao,LIU Zhonghua,et al. Experimental investigation of proppant particles transport in a tortuous fracture[J]. Powder Technology,2021,382:95−106. doi: 10.1016/j.powtec.2020.12.060
    [22] 张潇,刘欣佳,田永东,等. 水力压裂支撑剂铺置形态影响因素研究[J]. 特种油气藏,2021,28(6):113−120. ZHANG Xiao,LIU Xinjia,TIAN Yongdong,et al. Study on factors influencing the displacement pattern of hydraulic fracturing proppant[J]. Special Oil & Gas Reservoirs,2021,28(6):113−120. doi: 10.3969/j.issn.1006-6535.2021.06.015
    [23] BANDARA K M A S,RANJITH P G,RATHNAWEERA T D. Laboratory-scale study on proppant behaviour in unconventional oil and gas reservoir formations[J]. Journal of Natural Gas Science and Engineering,2020,78:103329. doi: 10.1016/j.jngse.2020.103329
    [24] WANG Jie,HUANG Yixiao,ZHOU Fujian,et al. The influence of proppant breakage,embedding,and particle migration on fracture conductivity[J]. Journal of Petroleum Science and Engineering,2020,193:107385. doi: 10.1016/j.petrol.2020.107385
    [25] AHAMED M A A,PERERA M S A,BLACK J R,et al. Investigating the proppant damage mechanisms expected in a propped coal fracture and its effect on fracture flow[J]. Journal of Petroleum Science and Engineering,2021,198:108170. doi: 10.1016/j.petrol.2020.108170
    [26] 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: SY/T 5108–2014[S]. 北京: 石油工业出版社, 2015.
    [27] HUANG Fansheng,DONG Changyin,YOU Zhenjiang,et al. Detachment of coal fines deposited in proppant packs induced by single–phase water flow:Theoretical and experimental analyses[J]. International Journal of Coal Geology,2021,239:103728. doi: 10.1016/j.coal.2021.103728
    [28] ZOU Yushi,ZHANG S C,ZHANG Jiezhang. Experimental method to simulate coal fines migration and coal fines aggregation prevention in the hydraulic fracture[J]. Transport in Porous Media,2014,101(1):17−34. doi: 10.1007/s11242-013-0228-9
    [29] HU Shengyong,CHEN Yunbo,HAO Yongxin,et al. Experimental study of the effects of fine retention on fracturing proppant permeability in coalbed methane reservoirs[J]. Journal of Natural Gas Science and Engineering,2020,83:103604. doi: 10.1016/j.jngse.2020.103604
    [30] 邹雨时,张士诚,张劲,等. 煤粉对裂缝导流能力的伤害机理[J]. 煤炭学报,2012,37(11):1890−1894. ZOU Yushi,ZHANG Shicheng,ZHANG Jin,et al. Damage mechanism of coal powder on fracture conductivity[J]. Journal of China Coal Society,2012,37(11):1890−1894.
    [31] LYU Shuaifeng,WANG Shengwei,CHEN Xiaojun,et al. Natural fractures in soft coal seams and their effect on hydraulic fracture propagation:A field study[J]. Journal of Petroleum Science and Engineering,2020,192:107255. doi: 10.1016/j.petrol.2020.107255
    [32] XIAO Hui,LI Zhenming,HE Siyuan,et al. Experimental study on proppant diversion transportation and multi–size proppant distribution in complex fracture networks[J]. Journal of Petroleum Science and Engineering,2020,196(6):107800.
    [33] CHUN T,LI Yanchao,WU Kan. Comprehensive experimental study of proppant transport in an inclined fracture[J]. Journal of Petroleum Science and Engineering,2020,184:106523. doi: 10.1016/j.petrol.2019.106523
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  4
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 修回日期:  2022-03-01
  • 刊出日期:  2022-03-25
  • 网络出版日期:  2022-04-01

目录

    /

    返回文章
    返回