Influencing factors on gas production effect of acid fractured CBM Wells in deep coal seam of Daning-Jixian Block
-
摘要: 大宁−吉县区块深层8号煤层面积大、厚度大、分布广、煤层气资源富集,体积酸压后试采获得突破,但试采井产能差异大,产能主控因素不明确,严重制约煤层气开发进程。针对大宁−吉县区块2 000 m以深的上石炭统本溪组8号煤层试采井,从地质条件、酸压施工和排采制度中选取28个典型评价指标,运用灰色关联方法对煤层气井酸压后产能进行敏感性分析并提出相应技术对策。结果表明:酸压施工因素对产能的影响高于地质因素和排采因素;砂量、酸量、见气前产水指数、泥质含量和阵列感应电阻率是影响该区块气井产能的主控因素,可将阵列感应电阻率和泥质含量作为筛选有利区的重要指标;提出采用低密度、低粒径支撑剂提高支撑剂运移距离与支撑裂缝长度;控制排采速度不超过200 m3/d,以保证深层煤层气平稳连续产出。该研究可为深层煤层气有利区筛选、施工参数优化以及排采制度调整提供参考。Abstract: The No.8 deep coal seam in Daning-Jixian Block is large, thick, widely distributed, and rich in coalbed methane(CBM) resources. After volume acid fracturing, a breakthrough has been achieved in the producing test. However, the productivity of the testing wells varies greatly, and the major controlling factors of productivity are not clear, severely restricting the CBM development. In this paper, the testing wells in the No.8 coal seam with a buried depth of more than 2 000 m of the Upper Carboniferous Benxi Formation in Daning-Jixian Block were taken as the research object, and 28 typical evaluation indicators were selected from geological conditions, acid fracturing construction and drainage technology. The grey correlation method was applied to analyze the production sensitivity of CBM wells after acid fracturing, and corresponding technical measures were presented. The results show that factors of acid fracturing construction have a greater impact on productivity than geological factors and drainage factors. Sand volume, acid dosage, water production index before CBM breakthrough, mud content and array induction resistivity(M2RX) are the main controlling factors of productivity. The M2RX and mud content can be used as important indicators to screen out favorable areas. Low density and small particle size proppants are proposed to increase the migration distance of proppants and the propped fracture length. Gas production rate is controlled below 200 m3/d to ensure the smooth and continuous production of deep CBM. This research could provide reference for the selection of favorable areas, optimization of construction parameters and adjustment of drainage and production systems.
-
-
表 1 10%盐酸浸泡前后煤岩抗压强度变化
Table 1 Changes of coal compressive strength before and after soaking in 10% hydrochloric acid
岩心
编号抗压强度/MPa 备注 天然状态 酸化后 煤心1 30.27 28.80 均为紧邻钻取岩心对比 煤心2 27.52 22.05 煤心3 24.95 15.78 表 2 10%盐酸浸泡前后煤岩气测渗透率对比
Table 2 Comparison of measured permeability of coal and gas before and after soaking in 10% hydrochloric acid
岩心编号 渗透率/10−3 μm2 原始状态 浸泡后 浸泡后/原始状态比值 煤心4 0.054 7 0.554 5 10.14 煤心5 0.014 1 0.124 9 8.86 煤心6 0.059 8 0.956 1 15.99 煤心7 0.013 3 0.155 6 11.70 表 3 试验井的地质、工程和生产参数
Table 3 Geological, engineering and production parameters of test wells
井号 地质参数 电阻率/
(Ω·m)泥质质量
分数/%储层有效
厚度/m射孔厚
度/m自然伽
马/API声波时差/
(μs·m−1)含气量/
(m3·t−1)高程/
m储层压
力/MPa密度/
(g·cm−3)临界解吸压
力/MPa孔隙
率/%临储比 井径扩
大率/%构造
曲率DJ3-2 588 12.3 9.8 5.5 54.5 363 28.2 −710 19.7 1.45 19.7 4.34 1.00 0.01 0.10 DJ3-4 535 12.3 8.9 6.0 48.3 382 27.5 −917 21.3 1.45 21.3 4.40 1.00 6.16 0.07 DJ3-6 648 15.5 7.5 3.5 45.4 397 27.2 −1 089 22.9 1.43 22.8 4.28 1.00 6.02 0.09 DJ3-7 522 14.5 7.6 5.0 46.3 376 27.8 −955 22.2 1.49 22.2 4.58 1.00 1.48 0.10 DJ6-10 279 15.1 7.9 4.5 35.4 401 28.7 −1 124 20.8 1.50 18.8 4.34 0.90 9.65 0.12 DJ7-5 560 17.7 7.3 5.0 49.7 404 29.2 −996 22.2 1.47 20.8 2.80 0.93 12.24 0.08 DJ4-8 77 16.9 7.6 4.0 58.5 390 27.7 −1 018 22.1 1.42 19.5 4.94 0.88 19.90 0.13 井号 酸压施工参数 排采参数 每米加
砂强度/
(m3·m–1)总砂
量/m3氢离子
量/109 mol施工排量/
(m3·min–1)总液
量/m3监测裂
缝破裂
面积/m2清洁液量
加液强度/
(m·m–3)清洁液
量/m3前置液
占压裂
液比值平均砂
比/%停泵压
力/MPa见气前
产水指数/
(m3·d−1·MPa−1)产气时井
底流压/
MPaDJ3-2 4.08 40.0 1.55 11.5 1 905.0 30 225 153.88 1 508 0.21 2.5 40.0 25.44 17.90 DJ3-4 2.14 12.7 0.83 7.5 1 011.5 20 489 87.69 520 0.49 5.4 28.7 7.63 20.40 DJ3-6 1.44 10.8 3.21 7.5 1 346.0 83 790 132.93 997 0.26 1.7 31.5 22.94 20.27 DJ3-7 5.03 38.2 2.87 9.8 1 135.0 18 840 64.74 492 0.57 10.0 35.2 8.46 18.13 DJ6-10 3.92 31.0 4.55 10.5 1 290.0 29 673 108.86 860 0.33 4.1 39.6 9.34 15.34 DJ7-5 7.26 53.0 5.55 12.0 1 879.0 76 381 158.63 1 158 0.38 4.8 16.8 46.55 20.90 DJ4-8 0.20 1.5 2.41 6.0 1 510.0 85 376 151.32 1 150 0.24 2.00 37.6 5.35 15.63 表 4 煤层气井酸压后产能灰色关联度及排序
Table 4 Grey correlation degree and ranking of CBM well productivity after acid fracturing
参数类别 影响因素 关联度 排序 参数类别 影响因素 关联度 排序 酸压 每米加砂强度 0.961 9 1 地质 自然伽马 0.806 1 15 酸压 总砂量 0.948 7 2 地质 声波时差 0.803 6 16 排采 见气前米产水指数 0.915 0 3 地质 含气量 0.802 8 17 酸压 酸液用量 0.912 7 4 地质 高程 0.798 9 18 酸压 施工排量 0.870 6 5 地质 储层压力 0.798 6 19 酸压 总液量 0.863 7 6 地质 密度 0.791 3 20 地质 电阻率 0.857 8 7 地质 临界解吸压力 0.789 8 21 地质 泥质含量 0.846 0 8 地质 临储比 0.780 7 22 酸压 监测裂缝破裂面积 0.842 3 9 地质 井径扩大率 0.734 7 23 酸压 清洁液量加液强度 0.839 5 10 地质 构造曲率 0.726 8 24 地质 储层有效厚度 0.831 6 11 酸压 平均砂比 0.675 0 25 酸压 清洁液量 0.827 3 12 地质 测井孔隙率 0.657 8 26 酸压 前置液占压裂液比值 0.821 7 13 排采 井底流压降 0.600 2 27 地质 射孔厚度 0.806 2 14 酸压 停泵压力 0.582 5 28 表 5 煤层气井酸压后产能影响因素排序
Table 5 Sequence of factors affecting productivity of coalbed methane wells after acid fracturing
类别 关联度平均值 排序 酸压 0.831 4 1 地质 0.788 8 2 排采 0.757 6 3 -
[1] 岑学齐,吴晓东,梁伟,等. 煤层气井产能影响因素分析[J]. 科学技术与工程,2014,14(4):201−204. CEN Xueqi,WU Xiaodong,LIANG Wei,et al. Analysis of factors affecting productivity of coalbed gas wells[J]. Science Technology and Engineering,2014,14(4):201−204. DOI: 10.3969/j.issn.1671-1815.2014.04.041 [2] 聂志宏,巢海燕,刘莹,等. 鄂尔多斯盆地东缘深层煤层气生产特征及开发对策:以大宁–吉县区块为例[J]. 煤炭学报,2018,43(6):1738−1746. NIE Zhihong,CHAO Haiyan,LIU Ying,et al. Development strategy and production characteristics of deep coalbed methane in the east Ordos Basin:Taking Daning−Jixian block for example[J]. Journal of China Coal Society,2018,43(6):1738−1746. [3] 李宇,张亚飞,刘广景,等. 基于组合权重的煤层气井压裂后产量影响因素分析[J]. 特种油气藏,2020,27(3):115−120. LI Yu,ZHANG Yafei,LIU Guangjing,et al. Production sensitivity analysis of fractured CBM well based on combination weight[J]. Special Oil & Gas Reservoirs,2020,27(3):115−120. DOI: 10.3969/j.issn.1006-6535.2020.03.019 [4] 党枫. 沁水盆地柿庄南区块不同构造地质单元煤层气井产能影响因素分析[D]. 北京: 中国地质大学(北京), 2020. DANG Feng. Analysis of factors influencing the productivity of coalbed methane in different geological units in Shizhuangnan block, Qinshui Basin[D]. Beijing: China University of Geosciences(Beijing), 2020.
[5] 石永霞,陈星,赵彦文,等. 阜康西部矿区煤层气井产能地质影响因素分析[J]. 煤炭工程,2018,50(2):133−136. SHI Yongxia,CHEN Xing,ZHAO Yanwen,et al. Analysis on geological influencing factors of coalbed methane productivity in Fukang western mining area[J]. Coal Engineering,2018,50(2):133−136. DOI: 10.11799/ce201802035 [6] 王宁,王立志,周芊芊. 延川南区块煤层气单井产能影响因素分析[J]. 油气藏评价与开发,2012,2(5):78−82. WANG Ning,WANG Lizhi,ZHOU Qianqian. Influence factors on production of CBM wells in south Yanchuan block[J]. Reservoir Evaluation and Development,2012,2(5):78−82. [7] 王超文,彭小龙,贾春生,等. 枣园区块煤层气井产能影响因素分析[J]. 油气藏评价与开发,2016,6(3):67−70. WANG Chaowen,PENG Xiaolong,JIA Chunsheng,et al. Influential factors of productivity in coalbed methane wells of Zaoyuan block[J]. Reservoir Evaluation and Development,2016,6(3):67−70. DOI: 10.3969/j.issn.2095-1426.2016.03.015 [8] 徐文军,刘升贵,孟磊. 潘河区块15号煤层煤层气的生产特征及其影响因素分析[J]. 中国矿业,2019,28(12):155−160. XU Wenjun,LIU Shenggui,MENG Lei. Analysis on the production performance and its influencing factors of No. 15 coal seam in the Panhe block[J]. China Mining Magazine,2019,28(12):155−160. [9] 吕玉民,柳迎红,陈桂华,等. 沁水盆地南部煤层气水平井产能影响因素分析[J]. 煤炭科学技术,2020,48(10):225−232. LYU Yumin,LIU Yinghong,CHEN Guihua,et al. Analysis of factors affecting productivity of CBM in horizontal wells in southern Qinshui Basin[J]. Coal Science and Technology,2020,48(10):225−232. [10] 许婷,伏海蛟,马英哲,等. 准噶尔盆地东南缘煤层气勘探目标优选[J]. 特种油气藏,2017,24(2):18−23. XU Ting,FU Haijiao,MA Yingzhe,et al. Selection of CBM exploration targets in southeastern margin of Junggar Basin[J]. Special Oil & Gas Reservoirs,2017,24(2):18−23. DOI: 10.3969/j.issn.1006-6535.2017.02.004 [11] 王红伟,姜好仁,马财林,等. 大宁–吉县地区午城煤层气试验井组试采效果评价及影响因素分析[J]. 中国煤层气,2006,3(2):31−36. WANG Hongwei,JIANG Haoren,MA Cailin,et al. The analysis of production effect and the discussion of influencing factors of Wucheng coalbed methane test well group in Daning–Jixian area[J]. China Coalbed Methane,2006,3(2):31−36. DOI: 10.3969/j.issn.1672-3074.2006.02.008 [12] 赵欣,姜波,张尚锟,等. 鄂尔多斯盆地东缘三区块煤层气井产能主控因素及开发策略[J]. 石油学报,2017,38(11):1310−1319. ZHAO Xin,JIANG Bo,ZHANG Shangkun,et al. Main controlling factors of productivity and development strategy of CBM wells in block 3 on the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2017,38(11):1310−1319. DOI: 10.7623/syxb201711010 [13] 王丹,赵峰华,姚晓莉,等. 临汾区块煤层气产能地质影响因素分析[J]. 特种油气藏,2016,23(2):1−4. WANG Dan,ZHAO Fenghua,YAO Xiaoli,et al. Analysis of geological factors on CBM productivity in block Linfen[J]. Special Oil & Gas Reservoirs,2016,23(2):1−4. DOI: 10.3969/j.issn.1006-6535.2016.02.001 [14] 秦勇,申建. 论深层煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136. QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136. [15] 李松,汤达祯,许浩,等. 深部煤层气储层地质研究进展[J]. 地学前缘,2016,23(3):10−16. LI Song,TANG Dazhen,XU Hao,et al. Progress in geological researches on the deep coalbed methane reservoirs[J]. Earth Science Frontiers,2016,23(3):10−16. [16] SCHECHTER R S. 油井增产技术[M]. 刘德铸, 译. 北京: 石油工业出版社, 2003. [17] 杨遂发. 山西省大宁–吉县地区煤层气地质研究[D]. 北京: 中国地质大学(北京), 2002. YANG Suifa. Comprehensive geological study of coal seam methane in the Daning–Jixian area of Shanxi Province[J]. Beijing: China University of Geosciences(Beijing), 2002.
[18] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77−84. ZENG Bo,WANG Xinghao,HUANG Haoyong,et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J]. Petroleum Drilling Techniques,2020,48(5):77−84. DOI: 10.11911/syztjs.2020073 [19] 张娅妮,马新仿. 页岩气体积压裂数值模拟研究[J]. 天然气与石油,2015,33(1):54−58. ZHANG Yani,MA Xinfang. Numerical simulation study on shale gas volume fracturing[J]. Natural Gas and Oil,2015,33(1):54−58. DOI: 10.3969/j.issn.1006-5539.2015.01.012 [20] 林永茂,王兴文,刘斌. 威荣深层页岩气体积压裂工艺研究及应用[J]. 钻采工艺,2019,42(4):67−69. LIN Yongmao,WANG Xingwen,LIU Bin. Research and application of volumetric fracturing in Weirong deep shale gas reservoirs[J]. Drilling & Production Technology,2019,42(4):67−69. DOI: 10.3969/J.ISSN.1006-768X.2019.04.19 [21] 王兴文,林永茂,缪尉杰. 川南深层页岩气体积压裂工艺技术[J]. 油气藏评价与开发,2021,11(1):102−108. WANG Xingwen,LIN Yongmao,MIAO Weijie. Volume fracturing technology of deep shale gas in southern Sichuan[J]. Reservoir Evaluation and Development,2021,11(1):102−108. [22] 刘思峰. 灰色系统理论及其应用(第八版)[M]. 北京: 科学出版社, 2017. [23] 石军太,孙政,刘成源,等. 一种快速准确预测煤层气井生产动态的解析模型[J]. 天然气工业,2018,38(增刊1):43−49. SHI Juntai,SUN Zheng,LIU Chengyuan,et al. An analytical model for quickly and accurately predicting the production performance of CBM wells[J]. Natural Gas Industry,2018,38(Sup.1):43−49. [24] 石军太,李相方,徐兵祥,等. 煤层气解吸扩散渗流模型研究进展[J]. 中国科学:物理学 力学 天文学,2013,43(12):1548−1557. SHI Juntai,LI Xiangfang,XU Bingxiang,et al. Review on desorption–diffusion–flow model of coal–bed methane[J]. Scientia Sinica(Physica,Mechanica & Astronomica),2013,43(12):1548−1557. [25] 王成旺,冯延青,杨海星,等. 鄂尔多斯盆地韩城区块煤层气老井挖潜技术及应用[J]. 煤田地质与勘探,2018,46(5):212−218. WANG Chengwang,FENG Yanqing,YANG Haixing,et al. Potential–tapping technology and its application in old CBM wells in Hancheng block of Ordos Basin[J]. Coal Geology & Exploration,2018,46(5):212−218. DOI: 10.3969/j.issn.1001-1986.2018.05.033 [26] ZHAO Junlong,TANG Dazhen,XU Hao,et al. High production indexes and the key factors in coalbed methane production:A case in the Hancheng block,southeastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2015,130:55−67. DOI: 10.1016/j.petrol.2015.03.005
[27] 计勇,郭大立,赵金洲,等. 影响煤层气井压后产量的因素分析:以韩城区块为例[J]. 煤田地质与勘探,2012,40(1):10−13. JI Yong,GUO Dali,ZHAO Jinzhou,et al. Factors affecting the production of coalbed methane well after fracturing:A case study of Hancheng block[J]. Coal Geology & Exploration,2012,40(1):10−13. DOI: 10.3969/j.issn.1001-1986.2012.01.003 [28] 王蕊,石军太,王天驹,等. 煤层气与致密气合采敏感性因素的数值模拟[J]. 断块油气田,2016,23(6):812−817. WANG Rui,SHI Juntai,WANG Tianju,et al. Numerical simulation of sensitive factors of commingled production of coalbed methane and tight gas[J]. Fault–Block Oil & Gas Field,2016,23(6):812−817. [29] 杜世涛,吴斌,马群,等. 阜康矿区西部煤层气高产因素追踪[J]. 断块油气田,2019,26(2):181−186. DU Shitao,WU Bin,MA Qun,et al. Factors of high–yielding coalbed methane in western Fukang mining area[J]. Fault–Block Oil & Gas Field,2019,26(2):181−186. [30] 闫霞,温声明,聂志宏,等. 影响煤层气开发效果的地质因素再认识[J]. 断块油气田,2020,27(3):375−380. YAN Xia,WEN Shengming,NIE Zhihong,et al. Re−recognition of geological factors affecting coalbed methane development effect[J]. Fault−Block Oil & Gas Field,2020,27(3):375−380. -
期刊类型引用(1)
1. 李广疆. 蒙陕矿区深部强矿压小煤柱巷道采空水综合防控技术研究. 中国资源综合利用. 2021(12): 28-33 . 百度学术
其他类型引用(0)