留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤矿井下随掘地震震源特征及探测性能研究

王保利 程建远 金丹 杨小刚 杨辉

王保利,程建远,金丹,等.煤矿井下随掘地震震源特征及探测性能研究[J].煤田地质与勘探,2022,50(1):10−19 doi: 10.12363/issn.1001-1986.21.11.0639
引用本文: 王保利,程建远,金丹,等.煤矿井下随掘地震震源特征及探测性能研究[J].煤田地质与勘探,2022,50(1):10−19 doi: 10.12363/issn.1001-1986.21.11.0639
WANG Baoli,CHENG Jianyuan,JIN Dan,et al.Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J].Coal Geology & Exploration,2022,50(1):10−19 doi: 10.12363/issn.1001-1986.21.11.0639
Citation: WANG Baoli,CHENG Jianyuan,JIN Dan,et al.Characteristics and detection performance of the source of seismic while excavating in underground coal mines[J].Coal Geology & Exploration,2022,50(1):10−19 doi: 10.12363/issn.1001-1986.21.11.0639

煤矿井下随掘地震震源特征及探测性能研究

doi: 10.12363/issn.1001-1986.21.11.0639
基金项目: 国家重点研发计划课题(2018YFC0807804);国家自然科学基金项目(42074175);陕西省自然科学基础研究计划项目(2020JM-714,2022JQ-949)
详细信息
    第一作者:

    王保利,1981年生,男,山西兴县人,博士,副研究员,从事矿井地球物理勘探方法研究. E-mail:pooly1981@163.com

  • 中图分类号: P631

Characteristics and detection performance of the source of seismic while excavating in underground coal mines

  • 摘要: 煤矿智能化背景下,随掘地震已经成为掘进工作面安全掘进的地质保障关键技术之一,可实时、超前、精细探明掘进前方的隐蔽地质构造,如采空区、断层、陷落柱等,有效促进掘进生产安全高效。不同于广泛采用的反射槽波超前探测技术,随掘地震采用了掘进机掘进时震动信号作为激发源,替代了常规地震勘探中的炸药震源,具有震源绿色、安全、成本低、可重复、探掘同步等优点。由于掘进机震源在激发方式、能量、频率、带宽等方面与炸药震源差别较大,因此其探测性能受到很多关注。从随掘地震的震源机制、波场特征、传播距离、成像准确率等方面进行研究,详细分析其探测性能,认为随掘地震波场中槽波和横波发育,可利用槽波或横波进行超前探测;Y分量具有更好的信噪比优势,但在实际应用时考虑到反射面的走向,相同设备量情况下,Z分量更有优势;随掘地震的直达横波传播距离可达700 m以上,横波超前探测距离可达到300 m以上;随掘地震的直达槽波传播距离可达400 m 以上,槽波超前探测距离可达到170 m以上;常规掘进速度下,反射波叠加次数可达到16次,相比常规的一次探测,信噪比可提升4倍,有效提高了探测精度和准确度。后续将通过大量的随掘应用数据进一步修正随掘地震技术的性能参数。

     

  • 图  1  综掘机和掘锚机作业方式

    Fig. 1  Schematic diagram of operation modes of the fully mechanized excavator and anchor digge

    图  2  纵轴式和横轴式掘进机工作面受力分析

    Fig. 2  Stress analysis of the working face of longitudinal axis and transverse axis roadheaders

    图  3  掘进机截割人工煤壁时的三向工作载荷谱[14]

    Fig. 3  Three dimensional working load spectrum when cutting artificial coal wall by roadheaders[14]

    图  4  三维地质模型

    Fig. 4  3D geologic model

    图  5  3种震源模拟的三分量波场

    Fig. 5  Three component wave fields simulated by three sources

    图  6  炸药震源三分量记录(AGC参数100 ms)

    Fig. 6  Three component records of the explosive source (AGC parameter 100 ms)

    图  7  掘进机震源三分量记录(AGC参数100 ms)

    Fig. 7  Three component records of the roadheader source (AGC parameter 100 ms)

    图  8  炸药震源和掘进机震源信噪比与传播距离曲线

    Fig. 8  Curves of the signal-to-noise ratio and propagation distance of the explosive source and roadheader source

    图  9  不同叠加时间得到的地震干涉炮集

    (注:微信扫描二维码可浏览动态图)

    Fig. 9  Seismic interference shot sets obtained at different stacking times

    (Note: you can browse the GIF map by scanning the QR code on Wechat)

    图  10  不同叠加时间地震干涉得到的记录

    Fig. 10  Records obtained by seismic interference at different stacking times

    图  11  信噪比随叠加时间变化曲线

    Fig. 11  Variation curves of the signal-to-noise ratio with stacking time

    图  12  地震干涉炮集的信噪比随传播距离变化曲线

    Fig. 12  Variation curve of the signal-to-noise ratio of the seismic interference shot set with propagation distance

    图  13  随掘地震实际数据超前探测成像结果(Y=0为巷道位置)

    (注:微信扫描二维码可浏览动态图)

    Fig. 13  Imaging results of advance detection actual data of seismic while excavation (Y= 0 is the roadway position)

    (Note: you can browse the GIF map by scanning the QR code on Wechat)

    表  1  2种掘进机相关技术参数

    Table  1  Relevant technical parameters of two kinds of roadheaders

    掘进机型号截割头
    长度/m
    截割头
    直径/m
    牵引速度/
    (m·min−1)
    JM340D5.51.01.54
    EBZ160TY0.90.9462.4
    下载: 导出CSV

    表  2  各层介质参数

    Table  2  Medium parameters of each layer

    层号纵波速度/(m·s−1)横波速度/(m·s−1)密度/(kg·m−3)
    13 8002 0002 400
    21 8001 1001 400
    33 8002 0002 400
    下载: 导出CSV
  • [1] 夏宇靖,杨体仁,杨战宁. 独头巷道超前勘探的有效手段: 瑞雷波勘探技术井下超前勘探试验结果述评[J]. 煤田地质与勘探,1992,20(5):50−52.

    XIA Yujing,YANG Tiren,YANG Zhanning. An efficient means for advance exploration in dead ends: A review of results of Rayleigh wave prospecting test for advance exploration in underground coal mines[J]. Coal Geology & Exploration,1992,20(5):50−52.
    [2] 王季,覃思,吴海,等. 随掘地震实时超前探测系统的试验研究[J]. 煤田地质与勘探,2021,49(4):1−7. doi: 10.3969/j.issn.1001-1986.2021.04.001

    WANG Ji,QIN Si,WU Hai,et al. Experimental study on advanced real time detection system of seismic−while−excavating[J]. Coal Geology & Exploration,2021,49(4):1−7. doi: 10.3969/j.issn.1001-1986.2021.04.001
    [3] 姬广忠.煤巷侧帮反射槽波成像方法及应用研究[D].北京: 煤炭科学研究总院, 2017.

    JI Guangzhong.Research on imaging methods and application of reflected in−seam wave at the roadway lateral wall of coal seam[D].Beijing: China Coal Research Institute, 2017.
    [4] 姬广忠. 反射槽波绕射偏移成像及应用[J]. 煤田地质与勘探,2017,45(1):121−124. doi: 10.3969/j.issn.1001-1986.2017.01.024

    JI Guangzhong. Diffraction migration imaging of reflected in−seam waves and its application[J]. Coal Geology & Exploration,2017,45(1):121−124. doi: 10.3969/j.issn.1001-1986.2017.01.024
    [5] 王鹏,鲁晶津,王信文. 再论巷道直流电法超前探测技术的有效性[J]. 煤炭科学技术,2020,48(12):257−263.

    WANG Peng,LU Jingjin,WANG Xinwen. Restudy on effectivity of direct current advance detection method in roadway[J]. Coal Science and Technology,2020,48(12):257−263.
    [6] 程久龙,赵家宏,董毅,等. 基于LBA–BP的矿井瞬变电磁法岩层富水性的定量预测研究[J]. 煤炭学报,2020,45(1):330−337.

    CHENG Jiulong,ZHAO Jiahong,DONG Yi,et al. Quantitative prediction of water abundance in rock mass by transient electro−magnetic method with LBA−BP neural network[J]. Journal of China Coal Society,2020,45(1):330−337.
    [7] TAYLOR N, MERRIAM J, GENDZWILL D, et al.The mining machine as a seismic source for in seam reflection mapping[C]//SEG Technical Program Expanded Abstracts, 2001: 1365–1368.
    [8] 胡应曦. 悬臂掘进机截割头功率和运动参数的分析[J]. 煤矿机械,1983(3):9−16.

    HU Yingxi. Analysis of cutting head power and motion parameters of cantilever roadheader[J]. Coal Mine Machinery,1983(3):9−16.
    [9] 刘欢,费小雪,贾吉喆,等. 随掘地震震源特征研究[J]. 能源技术与管理,2015,40(1):17−19. doi: 10.3969/j.issn.1672-9943.2015.01.006

    LIU Huan,FEI Xiaoxue,JIA Jizhe,et al. Study on focal characteristics of digging earthquake[J]. Energy Technology and Management,2015,40(1):17−19. doi: 10.3969/j.issn.1672-9943.2015.01.006
    [10] 刘强. L1范数约束的随掘地震噪声衰减[J]. 煤炭学报,2021,46(8):2699−2705.

    LIU Qiang. Noise attenuation based on L1−norm constraint inversion in seismic while drilling[J]. Journal of China Coal Society,2021,46(8):2699−2705.
    [11] 覃思.煤矿井下随采地震技术的试验研究[D].北京: 煤炭科学研究总院, 2015.

    QIN Si.Experimental study of seismic while mining in underground coal mines[D].Beijing: China Coal Research Institute, 2015.
    [12] 李亚豪,程久龙,姜旭,等. 基于互相关的随掘地震超前探测有效信号提取方法研究[J]. 中国矿业,2020,29(5):82−85.

    LI Yahao,CHENG Jiulong,JIANG Xu,et al. Research on effective signals extraction method of seismic while drilling ahead detection based on cross–correlation[J]. China Mining Magazine,2020,29(5):82−85.
    [13] 李圣林, 张平松, 姬广忠, 等.随掘地震超前探测掘进机震源信号的复合干涉处理研究[J/OL].采矿与安全工程学报: 1–14 [2021–11–09].https://doi.org/10.13545/j.cnki.jmse.2021.0164.

    LI Shenglin, ZHANG Pingsong, JI Guangzhong, et al.Research on compound interference processing of roadheader source signal for advanced seismic detection while drifting[J].Journal of Mining and Safety Engineering: 1–14 [2021–11–09].https://doi.org/10.13545/j.cnki.jmse.2021.0164.
    [14] 黄民,吴淼,安伟,等. 横切割头掘进机械振动测试及模态分析[J]. 中国矿业大学学报,1997,26(2):15−19.

    HUANG Min,WU Miao,AN Wei,et al. Vibration measurement and modal analysis for horizontal axis tunneller[J]. Journal of China University of Mining & Technology,1997,26(2):15−19.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  9
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2021-12-08
  • 刊出日期:  2022-02-01
  • 网络出版日期:  2022-01-18

目录

    /

    返回文章
    返回