基于组合赋权的加权秩和比法的底板突水危险性评价

姚辉, 尹尚先, 徐维, 张润畦, 蒋知廷

姚辉,尹尚先,徐维,等. 基于组合赋权的加权秩和比法的底板突水危险性评价[J]. 煤田地质与勘探,2022,50(6):132−137. DOI: 10.12363/issn.1001-1986.21.10.0556
引用本文: 姚辉,尹尚先,徐维,等. 基于组合赋权的加权秩和比法的底板突水危险性评价[J]. 煤田地质与勘探,2022,50(6):132−137. DOI: 10.12363/issn.1001-1986.21.10.0556
YAO Hui,YIN Shangxian,XU Wei,et al. Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting[J]. Coal Geology & Exploration,2022,50(6):132−137. DOI: 10.12363/issn.1001-1986.21.10.0556
Citation: YAO Hui,YIN Shangxian,XU Wei,et al. Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting[J]. Coal Geology & Exploration,2022,50(6):132−137. DOI: 10.12363/issn.1001-1986.21.10.0556

 

基于组合赋权的加权秩和比法的底板突水危险性评价

基金项目: 国家自然科学基金项目(51774136,51974126)
详细信息
    作者简介:

    姚辉,1998年生,男,山西运城人,硕士研究生,研究方向为矿井水灾与地质勘探安全技术. E-mail:tsienhsueshen@126.com

  • 中图分类号: TD745

Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting

  • 摘要: 煤层深部开采使得煤矿底板水害事故频发,传统突水危险性评价方法评价指标单一、评价结果偏离实际的弊端逐渐显露,造成众多新型评价方法涌现。以河北省华北型煤田东欢坨矿为研究对象,选取含水层性能、隔水层性能、地质条件、煤层条件的评价因素集,综合考虑10个评价因素,建立适用于东欢坨矿的底板突水危险性评价指标体系;利用层次分析法确定各指标主观权重,利用CRITIC法确定各指标客观权重,将2者耦合得到综合权重,兼顾专家主观经验与数据客观信息,保证权重确定的全面性;引入加权秩和比法,构建评价矩阵,依据指标对评价对象所产生的优劣性影响将其分为高优型指标和低优型指标,编秩计算WRSR值,对数据进行分档排序,确定安全、较安全、较危险、危险4个评价等级区间,形成评价模型;利用GIS强大的空间管理及信息处理功能,完成结果的信息展示;将评价结果与实际工程出水位置相比较,发现突水位置都在底板突水较危险区域,并与传统评价方法突水系数法相对比,证明评价模型有效。研究成果形成了煤层底板突水危险性评价新方法,丰富煤层底板突水危险性评价方法的种类,为煤矿防治水工作者提供新思路。
    Abstract: Deep mining of the coal seam causes frequent water hazards in the coal mine floor. As the disadvantages of traditional water inrush risk assessment methods, such as single evaluation index and deviation of the evaluation results from reality are gradually revealed, many new assessment methods are emerging. In this paper, Donghuantuo Coal Mine, a North China type coalfield, in Hebei province is taken as the research object. The evaluation factor sets including aquifer capacity, aquifuge capacity, geological conditions and coal seam conditions are selected, and with ten evaluation factors being considered, a floor water inrush risk evaluation index system applicable to Donghuantuo Coal Mine is established. AHP and CRITIC methods are adopted to determine the subjective weight and objective weight of each index, and then the two parts are coupled to obtain the comprehensive weight. In the process, the subjective experience of experts and objective data are taken into account to ensure the comprehensiveness of weight determination. By using the weighted rank sum ratio method, an evaluation matrix is constructed. And indexes are divided into high-optimality and low-optimality according to their impacts on the evaluation objects. By ranking and calculating the WRSR value, and sorting the data based on grades, an evaluation model is formed in which four evaluation levels are determined, including safe, safer, more dangerous and dangerous. The results are displayed by using powerful spatial management and information processing function of GIS. By comparing the evaluation results with water outlet positions in the actual project, it is found that these positions are in the more dangerous area of floor water inrush. The effectiveness of the evaluation model is proved by comparing the new method with the traditional water inrush coefficient method. The research forms a new method for assessing the risk of water inrush from the coal seam floor, which enriches the existing assessment methods and provides a new thought for coal mine water control workers.
  • 近年来,煤炭开采工作逐渐向深部转移,“带压开采”理论体系的研究工作逐渐成为防治水工作者的主课题之一[1]。煤层底板突水事故的频发,造成众多底板突水危险性评价方法涌现。武强等[2-4]应用GIS信息技术建立基于AHP的脆弱性评价模型。尹尚先等[5]用井下钻孔水压裂试验得到的数据,进行数值模拟评估带压开采突水危险性。李忠建等[6]综合考虑煤层采深、隔水层厚度和奥陶系灰岩(简称奥灰)水压等指标,结合模糊聚类法及综合评价法对山东南屯下组煤十一采区进行突水危险性评价。赵东云等[7]利用Mapobjects和人工神经网络(ANN)的方法,考虑空间和非线性指标,对邢台章村矿进行突水危险性评价。徐维[8]运用灰色系统理论的方法,研究了综放开采的特厚煤层的突水危险性。施龙青等[9]运用有序二元比较量化及模糊决策矩阵排序得到各评价指标组合权重,并运用单指标未知测度集建立评价模型。以上学者所建模型都有革新,且起到了良好的评价效果。可以说,评价方法演化至今日,每一种方法的提出、每一个模型的构建对于“带压开采”理论体系的建设和完善有着推动意义。

    笔者结合具有典型特征的河北省华北煤田东欢坨矿的底板奥灰突水实例,考虑多因素的影响,建立包含含水层、隔水层性能,地质条件、煤层条件的评价因素集,用AHP(层次分析法)主观权重法、CRITIC客观权重法分别确定各评价因素的主客观权重,并将2者耦合,保证权重确立的有效性,选取加权秩和比法(WRSR法),建立底板突水危险性评价模型,与工程实际突水点进行对比验证其准确性,以期为丰富底板突水危险性评价方法集提供新方法,为矿井水害防治提供新思路。

    东欢坨矿位于河北省唐山市,地势东北高西南低,矿区为温带大陆性气候。井田内无地表水发育,断层及褶曲发育。地下水的主要补给水源为地表水及大气降水,直接充水水源为石炭−二叠系砂岩裂隙承压含水层,间接充水水源为奥陶系灰岩岩溶裂隙承压含水层。研究对象8煤层为全区稳定−较稳定煤层,煤层平均厚度3.53 m,可采性指数为0.97。8煤层及其顶底板综合柱状图如图1所示。

    图  1  8煤层及其顶底板综合柱状图
    Figure  1.  Comprehensive histogram of No.8 coal seam and its roof and floor

    统计学家田凤调针对医疗卫生领域的指标统计及综合评测提出了加权秩和比法[10]。加权秩和比法是对n个评价对象进行评价分级得到m个评价等级之后,构建出m×n的评价矩阵,秩转换后得到RSR值,利用权重确定方法得到各评价对象的权重值,结合RSR值和权重值得到WRSR值,将最终得到的WRSR值进行优劣排序、分档处理,从而获得最终评价结果[11]。WRSR值与该指标发挥水平成正比。

    在构建的m×n矩阵中,RSR值的计算公式为:

    $$ {\rm{RS}}{{\rm{R}}_i} = \frac{1}{{m n}}\sum\limits_{j = 1}^m {{R_{ij}}} $$ (1)

    式中:i=1,2,···,nj=1,2,···,mRij为矩阵第i行第j列元素的秩。

    当考虑评价对象权重时,WRSR值的计算公式变为:

    $$ {\rm{WRS}}{{\rm{R}}_i}=\frac{1}{n}\sum\limits_{j = 1}^m {{W_j}} {R_{ij}} $$ (2)

    式中:Wj为第j个评价指标的权重值,应满足$ \displaystyle\sum\limits_{i = 1}^{m} {{W_j}} = 1 $

    详细步骤[12]介绍如下:(1) 根据评价需求建立评价指标体系。选取合适的评价指标,并将其归入到类属性中,从而建立起合适的评价指标体系。(2) 确定各指标权重。运用主客观赋权法得到各评价对象的综合权重。(3) 对数据所形成的表格进行编秩。根据数据列所形成的表格,对数据进行合理编秩。(4) 计算各指标的加权秩和比值。按照编排好的秩值,结合公式,得出各数据组的WRSR值。(5) 确定Probit值。计算秩次累计频率,并将其转换为Probit值。(6) 生成回归方程。以Probit值为自变量,WRSR值为因变量,生成回归方程:$ {\rm{WRSR}} = a + b \times {\rm{Probit}} $。(7) 分档排序。依据回归方程所计算得出的WRSR值对评价对象进行排序分档并验证其有效性。

    根据东欢坨矿研究区域的地质特点,结合华北煤田的地质大背景,针对性地提出东欢坨矿8煤层的底板突水危险性评价指标体系,包含含水层性能、隔水层性能基本评价指标集合及地质条件、煤层条件关键评价指标集合[13-14]。东欢坨矿8煤层评价指标体系如图2所示。

    图  2  底板突水危险性评价指标体系
    Figure  2.  Risk assessment index system of floor water inrush

    (1) 含水层的渗透性能通过渗透系数的大小来反映。渗透性越强,含水层间动态交换越频繁,突水危险性越高,为低优性指标,渗透系数等值线如图3a所示。

    图  3  评价指标专题
    Figure  3.  Thematic map of evaluation indicator

    (2) 含水层水压为底板突水的动力来源[15]。因此,水压越大,突水危险性越高,为低优型指标,含水层水压等值线如图3b所示。

    (3) 含水层富水性通过井田内钻孔抽水试验所得单位涌水量的大小来反映,为低优型指标,单位涌水量等值线如图3c所示。

    (4) 采用断层规模指数为指标对井田断层规模进行评价。断层规模指数为单位面积内所有断层走向长度与落差乘积之和[16],为低优型指标,断层规模指数等值线如图3d所示。

    (5) 用分形维数来量化评价井田构造复杂程度[17]。具体方法为运用AutoCAD软件对8煤层采掘工程平面图进行网格划分,以经纬网作为网格边界,将网格划分为100 m×100 m的网格,以网格中心点的分形维数来代表网格的中心维数[18]。分形维数越大,构造越发育,突水危险性越高,为低优型指标,构造分形维数等值线如图3e所示。

    (6) 在同等条件下,脆性砂岩比塑性砂岩力学强度高,因此,脆塑性岩厚度比越大,隔水层防突性能就越好[19],为高优型指标。脆塑性岩厚度比等值线如图3f所示。

    (7) 依据《建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程》,计算出底板破坏深度值:

    $$ {h_1} = 0.008\;5H + 0.166\;5\alpha + 0.107\;9L - 4.357\;9 $$ (3)

    式中:h1为煤层底板破坏深度,m;H为煤层开采深度,m;α为煤层倾角,(°);L为工作面斜长,m。

    底板破坏深度为低优型指标,等值线如图3g所示。

    (8) 隔水层厚度为高优型指标,等值线如图3h所示。

    (9) 随着采高增大,底板垂直应力减小,围岩竖直位移增大,位移等值线梯度减小,底板破坏深度增大,因此判定煤层厚度为低优型指标[20],煤层厚度等值线如图3i所示。

    (10) 煤层埋深越大,煤岩层原始应力越大,使得在工作面回采过程中底板隔水层破坏更加剧烈,为低优型指标。煤层埋深等值线如图3j所示。

    为了兼顾主观赋权法中专家经验知识与客观赋权法中指标间内在信息联系,选用主客观综合赋权法来确定各指标权重[21]

    运用AHP法确定各指标主观权重,运用CRITIC法确定各指标客观权重,并计算得出各指标综合权重值Wj

    $$ {W_j} = \frac{{{w_{{\rm{a}}j}}{w_{{\rm{b}}j}}}}{{\displaystyle\sum\limits_{j = 1}^m {{w_{{\rm{a}}j}}{w_{{\rm{b}}j}}} }} $$ (4)

    式中:waj为第j个评价指标主观权重值;wbj为第j个评价指标客观权重值。

    评价指标主观权重、客观权重及综合权重见表1

    表  1  各指标权重值
    Table  1.  Weight of each indicator
    指标因素主观权重客观权重综合权重指标因素主观权重客观权重综合权重
    渗透性0.0760.1040.047脆塑性岩厚度比0.0540.1100.046
    水压0.3170.0660.255底板破坏深度0.2340.0660.041
    富水性0.0380.1380.100隔水层厚度0.0440.1040.388
    断层规模0.1230.1270.049煤层厚度0.0170.1020.038
    构造复杂程度0.0640.1170.023煤层埋深0.0330.0660.013
    下载: 导出CSV 
    | 显示表格

    根据各指标对突水危险性的作用效果将指标分为高优型指标和低优型指标,并对数据依据其数据属性及大小编秩;计算出各数据组的WRSR值;将数据组的WRSR值由小到大排列,得出数据组累计频率即百分数并查阅《百分数与概率单位对照表》[10],得出对应的Probit值,结果见表2

    表  2  各数据组评价结果
    Table  2.  Evaluation results of each data group
    组号指标秩次WRSR值Probit值
    渗透性水压富水性断层规模构造复杂程度脆塑性岩厚度比底板破坏深度隔水层厚度煤层厚度煤层埋深
    组182889726520.523 35.253
    组2161046368960.681 95.842
    组3681151810380.705 86.281
    组499671997890.760 48.090
    组5742981041240.331 43.718
    组6454248531050.423 54.158
    组73191010419610.597 45.553
    组857367274470.494 94.746
    组9103733535730.474 94.475
    组1021055261021100.506 55.000
    下载: 导出CSV 
    | 显示表格

    以WRSR值为因变量,以Probit值为自变量,将顺序编排好后建立回归方程:

    $$ {\rm{WRSR}} = 0.102{\rm{Probit}} + 0.011 $$ (5)

    所得R2为0.883,证明线性方程合理有效。

    将百分数对应常用分档数,使用德尔菲法将10个数据组划分为4个等级区间,见表3

    表  3  数据组危险性等级划分
    Table  3.  Hazard grade classification of data groups
    等级百分数/%WRSR临界值数据组
    安全≥90≥0.705 8组3、组4
    较安全<90 & ≥40<0.705 8,≥0.494 9组1、组2、组7、组8、组10
    较危险<40 & ≥20<0.494 9,≥0.423 5组6、组9
    危险<20<0.423 5组5
    下载: 导出CSV 
    | 显示表格

    利用评价结果做出评价分区图,并与传统评价方法突水系数等值线图相叠加,做出突水危险性评价分区如图4所示。

    图  4  底板突水危险性评价分区
    Figure  4.  Floor water inrush risk assessment zoning map

    从所绘制出的评价分区图可以看出,安全与较安全区域占据井田绝大部分面积,较危险及危险区域主要集中在井田右上角。2010年8月和10月,受8煤层底板裂隙水影响,分别在2286工作面运道及风道掘进过程中,发生底板出水事件。两次突水位置都位于新方法划定的较危险评价分区,而突水系数介于0.032~0.036 MPa/m,表明新方法具有更高的准确性。

    且就判别条件来说,新方法不仅考虑到隔水层厚度及含水层水压两个关键因素,更将地质条件及煤层条件等基础因素纳入进来,应用到的信息更加丰富。并用4个危险性判别区间代替临界值,模糊了临界值的绝对控制作用,比较而言,基于组合赋权的加权秩和比法具有更高的准确性,评价结果更加科学合理,进一步验证了该模型的有效性。

    a. 综合考虑含水层性能、隔水层性能、地质条件、煤层条件在内的评价因素集,考虑10项评价因素,用层次分析法确定各评价因素主观权重,用CRITIC法确定各评价因素客观权重,将两者耦合得到综合权重,兼顾了指标的内在信息和行业专家的经验知识,保证了评价模型中对指标相对重要性的有效评估。

    b. 将其他领域的评价方法加权秩和比法引入进来,建立底板突水危险性评价模型,并利用地理信息系统的空间管理及分析功能,实现信息可视化表达。与工程中实际出水点相对比,发现突水点都处于评价较危险区域,并与传统评价方法突水系数法相对比,发现新方法的准确性更高,证明评价模型的有效性,对底板危险性评价方法的研究具有指导性。

  • 图  1   8煤层及其顶底板综合柱状图

    Fig.  1   Comprehensive histogram of No.8 coal seam and its roof and floor

    图  2   底板突水危险性评价指标体系

    Fig.  2   Risk assessment index system of floor water inrush

    图  3   评价指标专题

    Fig.  3   Thematic map of evaluation indicator

    图  4   底板突水危险性评价分区

    Fig.  4   Floor water inrush risk assessment zoning map

    表  1   各指标权重值

    Table  1   Weight of each indicator

    指标因素主观权重客观权重综合权重指标因素主观权重客观权重综合权重
    渗透性0.0760.1040.047脆塑性岩厚度比0.0540.1100.046
    水压0.3170.0660.255底板破坏深度0.2340.0660.041
    富水性0.0380.1380.100隔水层厚度0.0440.1040.388
    断层规模0.1230.1270.049煤层厚度0.0170.1020.038
    构造复杂程度0.0640.1170.023煤层埋深0.0330.0660.013
    下载: 导出CSV

    表  2   各数据组评价结果

    Table  2   Evaluation results of each data group

    组号指标秩次WRSR值Probit值
    渗透性水压富水性断层规模构造复杂程度脆塑性岩厚度比底板破坏深度隔水层厚度煤层厚度煤层埋深
    组182889726520.523 35.253
    组2161046368960.681 95.842
    组3681151810380.705 86.281
    组499671997890.760 48.090
    组5742981041240.331 43.718
    组6454248531050.423 54.158
    组73191010419610.597 45.553
    组857367274470.494 94.746
    组9103733535730.474 94.475
    组1021055261021100.506 55.000
    下载: 导出CSV

    表  3   数据组危险性等级划分

    Table  3   Hazard grade classification of data groups

    等级百分数/%WRSR临界值数据组
    安全≥90≥0.705 8组3、组4
    较安全<90 & ≥40<0.705 8,≥0.494 9组1、组2、组7、组8、组10
    较危险<40 & ≥20<0.494 9,≥0.423 5组6、组9
    危险<20<0.423 5组5
    下载: 导出CSV
  • [1] 尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181. YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:Inheritance and innovation[J]. Coal Geology&Exploration,2021,49(1):170−181. DOI: 10.3969/j.issn.1001-1986.2021.01.018

    YIN Shangxian, LIAN Huiqing, XU Bin, et al. Deep mining under safe water pressure of aquifer: Inheritance and innovation[J]. Coal Geology&Exploration, 2021, 49(1): 170–181. DOI: 10.3969/j.issn.1001-1986.2021.01.018

    [2] 武强,解淑寒,裴振江,等. 煤层底板突水评价的新型实用方法Ⅲ:基于GIS的ANN型脆弱性指数法应用[J]. 煤炭学报,2007,32(12):1301−1306. WU Qiang,XIE Shuhan,PEI Zhenjiang,et al. A new practical methodology of the coal floor water bursting evaluating Ⅲ:The application of ANN vulnerable index method based on GIS[J]. Journal of China Coal Society,2007,32(12):1301−1306. DOI: 10.3321/j.issn:0253-9993.2007.12.014

    WU Qiang, XIE Shuhan, PEI Zhenjiang, et al. A new practical methodology of the coal floor water bursting evaluating Ⅲ: The application of ANN vulnerable index method based on GIS[J]. Journal of China Coal Society, 2007, 32(12): 1301–1306. DOI: 10.3321/j.issn:0253-9993.2007.12.014

    [3] 武强,张波,赵文德,等. 煤层底板突水评价的新型实用方法Ⅴ:基于GIS的ANN型、证据权型、Logistic回归型脆弱性指数法的比较[J]. 煤炭学报,2013,38(1):21−26. WU Qiang,ZHANG Bo,ZHAO Wende,et al. A new practical methodology of coal seam floor water burst evaluation Ⅴ:The comparison study among ANN,the weight of evidence and the logistic regression vulnerable index method based on GIS[J]. Journal of China Coal Society,2013,38(1):21−26.

    WU Qiang, ZHANG Bo, ZHAO Wende, et al. A new practical methodology of the coal floor water bursting evaluatingⅤ: Comparison of vulnerable index method of ANN, evidence weight and Logistic regression based on GIS[J]. Journal of China Coal Society, 2013, 38(1): 21–26.

    [4] 武强,张志龙,张生元,等. 煤层底板突水评价的新型实用方法Ⅱ:脆弱性指数法[J]. 煤炭学报,2007,32(11):1121−1126. WU Qiang,ZHANG Zhilong,ZHANG Shengyuan,et al. A new practical methodology of the coal floor water bursting evaluating Ⅱ:The vulnerable index method[J]. Journal of China Coal Society,2007,32(11):1121−1126. DOI: 10.3321/j.issn:0253-9993.2007.11.001

    WU Qiang, ZHANG Zhilong, ZHANG Shengyuan, et al. A new practical methodology of the coal floor water bursting evaluating Ⅱ : The vulnerable index method[J]. Journal of China Coal Society, 2007, 32(11): 1121–1126. DOI: 10.3321/j.issn:0253-9993.2007.11.001

    [5] 尹尚先,虎维岳,刘其声,等. 承压含水层上采煤突水危险性评估研究[J]. 中国矿业大学学报,2008,37(3):311−315. YIN Shangxian,HU Weiyue,LIU Qisheng,et al. Risk assessment for water inrush from confined aquifers located under coal seams[J]. Journal of China University of Mining and Technology,2008,37(3):311−315. DOI: 10.3321/j.issn:1000-1964.2008.03.006

    YIN Shangxian, HU Weiyue, LIU Qisheng, et al. Risk assessment for water inrush from confined aquifers located under coal seam[J]. Journal of China University of Mining and Technology, 2008, 37(3): 311–315. DOI: 10.3321/j.issn:1000-1964.2008.03.006

    [6] 李忠建,魏久传,郭建斌,等. 运用突水系数法和模糊聚类法综合评价煤层底板突水危险性[J]. 矿业安全与环保,2010,37(1):24−26. LI Zhongjian,WEI Jiuchuan,GUO Jianbin,et al. Risk assessment for water inrush from coal seam floor based on water inrush coefficient and fuzzy clustering[J]. Mining Safety and Environmental Protection,2010,37(1):24−26. DOI: 10.3969/j.issn.1008-4495.2010.01.009

    LI Zhongjian, WEI Jiuchuan, GUO Jianbin, et al. Risk assessment for water inrush from coal seam floor based on water inrush coefficient and fuzzy clustering[J]. Mining safety and environmental protection, 2010, 37(1): 24–26. DOI: 10.3969/j.issn.1008-4495.2010.01.009

    [7] 赵东云,尹尚先,刘德民. 基于ANN的煤层底板突水危险性评价研究[J]. 煤炭技术,2010,29(7):68−70. ZHAO Dongyun,YIN Shangxian,LIU Demin. Study on water inrush dangerousness evalution of coal floor based on ANN[J]. Coal technology,2010,29(7):68−70.

    ZHAO Dongyun, YIN Shangxian, LIU Demin. Risk assessment of water inrush from coal seam floor based on ANN[J]. Coal technology, 2010, 29(7): 68–70.

    [8] 徐维. 龙王沟煤矿底板突水危险性评价[D]. 廊坊: 华北科技学院, 2020.

    XU Wei. Risk assessment of water inrush from Longwanggou Coal Mine floor[D]. Langfang: North China Institute of Science and Technology, 2020.

    [9] 施龙青,曲兴玥,韩进,等. 多模型融合评价煤层底板灰岩岩溶突水危险性[J]. 煤炭学报,2019,44(8):2484−2493. SHI Longqing,QU Xingyue,HAN Jin,et al. Multi–model fusion for assessing the risk of inrush of limestone karst water through mine floor[J]. Journal of China Coal Society,2019,44(8):2484−2493.

    SHI Longqing, QU Xingyue, HAN Jin, et al. Multi–model fusion for assessing the risk of inrush of limestone karst water through mine floor[J]. Journal of China Coal Society, 2019, 44(8): 2484–2493.

    [10] 田凤调. 秩和比法及其应用[M]. 北京: 中国统计出版社, 1993.
    [11] 徐俊平. 基于加权秩和比法的高压配电网规划评价方法及应用[D]. 北京: 华北电力大学, 2015.

    XU Junping. High voltage distribution network planning comprehensive evaluation and application research: Based on weighted rank sum ration method[D]. Beijing: North China Electric Power University, 2015.

    [12] 苗继承. 基于加权秩和比法的汽车物流服务商选择方法研究[D]. 西安: 长安大学, 2010.

    MIAO Jicheng. A study on selective methods of automotive logistics service providers based on the WRSR [D]. Xi’an: Chang’an University, 2010.

    [13] 武强,张志龙,马积福. 煤层底板突水评价的新型实用方法Ⅰ:主控指标体系的建设[J]. 煤炭学报,2007,32(1):42−47. WU Qiang,ZHANG Zhilong,MA Jifu. A new practical methodology of the coal floor water bursting evaluating Ⅰ:The master controlling index system construction[J]. Journal of China Coal Society,2007,32(1):42−47. DOI: 10.3321/j.issn:0253-9993.2007.01.009

    WU Qiang, ZHANG Zhilong, MA Jifu. A new practical methodology of the coal floor water bursting evaluatingⅠ: The master controlling index system construction[J]. Journal of China Coal Society, 2007, 32(1): 42–47. DOI: 10.3321/j.issn:0253-9993.2007.01.009

    [14] 张晓亮. 熵权耦合层次分析赋权在煤层底板突水评价中的应用[J]. 煤田地质与勘探,2017,45(3):91−95. ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. Coal Geology & Exploration,2017,45(3):91−95. DOI: 10.3969/j.issn.1001-1986.2017.03.017

    ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. Coal Geology & Exploration, 2017, 45(3): 91–95. DOI: 10.3969/j.issn.1001-1986.2017.03.017

    [15] 刘泽威,刘其声,刘洋. 煤层底板隐伏断层分类及突水防治措施[J]. 煤田地质与勘探,2020,48(2):141−146. LIU Zewei,LIU Qisheng,LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology & Exploration,2020,48(2):141−146. DOI: 10.3969/j.issn.1001-1986.2020.02.022

    LIU Zewei, LIU Qisheng, LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology&Exploration, 2020, 48(2): 141–146. DOI: 10.3969/j.issn.1001-1986.2020.02.022

    [16] 邱梅,施龙青,滕超,等. 赵官井田10煤层底板突水危险性评价[J]. 煤田地质与勘探,2015,43(3):61−65. QIU Mei,SHI Longqing,TENG Chao,et al. Evaluation of water inrush risk for No.10 coal seam floor of Zhaoguan mine field[J]. Coal Geology & Exploration,2015,43(3):61−65. DOI: 10.3969/j.issn.1001-1986.2015.03.012

    QIU Mei, SHI Longqing, TENG Chao, et al. Evaluation of water inrush risk for No. 10 coal seam floor of Zhaoguan mine field[J]. Coal Geology & Exploration, 2015, 43(3): 61–65. DOI: 10.3969/j.issn.1001-1986.2015.03.012

    [17] 朱晓华. 地理空间信息的分形与分维[M]. 北京: 测绘出版社, 2007.
    [18] 尹尚先,吴志远. 钱家营井田构造复杂程度定量评价[J]. 煤矿安全,2019,50(5):218−221. YIN Shangxian,WU Zhiyuan. Quantitative evaluation of structural complexity of Qianjiaying mine field[J]. Safety in Coal Mines,2019,50(5):218−221.

    YIN Shangxian, WU Zhiyuan. Quantitative evaluation of structural complexity of Qianjiaying mine field[J]. Safety in Coal Mines, 2019, 50(5): 218–221.

    [19] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.
    [20] 李江华, 许延春, 谢小锋, 等. 采高对煤层底板破坏深度的影响[J]. 煤炭学报, 2015, 40(增刊2): 303–310.

    LI Jianghua, XU Yanchun, XIE Xiaofeng, et al. Influence of mining height on coal seam floor failure depth[J]. Journal of China Coal Society, 205, 40(Sup.2): 303–310.

    [21] 魏久传,许玉阳,谢道雷,等. 基于距离函数组合赋权法的突水危险性评价[J]. 中国矿业,2021,30(4):162−167. WEI Jiuchuan,XU Yuyang,XIE Daolei,et al. The risk assessment of water bursting based on combination rule of distance function[J]. China Mining Magazine,2021,30(4):162−167.

    WEI Jiuzhuan, XU Yuyang, XIE Daolei, et al. Risk assessment of water inrush based on distance function combination weighting method[J]. China’s Mining, 2021, 30(4): 162–167.

  • 期刊类型引用(14)

    1. 尹尚先,姚辉,梁满玉,吴威,连会青,侯恩科,赵鹏,张义安,王雄. 突水系数60年:面临困境及发展方向. 煤炭学报. 2025(01): 600-609 . 百度学术
    2. 姚辉,尹慧超,梁满玉,尹尚先,侯恩科,连会青,夏向学,张金福,吴传实. 机器学习方法在矿井水防治理论体系研究中的应用思考. 煤田地质与勘探. 2024(05): 107-117 . 本站查看
    3. 杨茹蕙,李小萌,王铁记. 基于IAHP-EWM博弈论的煤层底板突水影响因素研究. 煤炭与化工. 2024(07): 43-47+52 . 百度学术
    4. 姚辉,尹慧超,尹尚先,侯恩科,毕梦,连会青,夏向学,梁满玉. 底板突水危险性评价研究进展. 煤炭科学技术. 2024(S1): 183-191 . 百度学术
    5. 朱宗奎. 基于Lawrence风险公式的突水系数修正模型研究. 矿业安全与环保. 2023(03): 89-94 . 百度学术
    6. 丁晓欣,种亚平,高静思,朱佳. “最后一公里”工程供水效果评价研究. 水利规划与设计. 2023(08): 50-54 . 百度学术
    7. 穆渴心,冉栋刚,张平清,张璐,王茂鑫. 基于组合赋权秩和比的实验室安全管理评价模型构建. 实验室研究与探索. 2023(05): 314-319 . 百度学术
    8. 代革联,吴佩凝,牛超,许珂,王峰,赵国杰,白丰源. 应用加权秩和比法评价底板突水危险性. 煤炭技术. 2023(09): 109-113 . 百度学术
    9. 马洪斌,郝琨,齐洁莹,连政,刘祥,李苑红,申丹. 基于赋权与加权秩和比的变电设备状态评价. 电力大数据. 2023(05): 53-61 . 百度学术
    10. 崔俊超,平宇,郝建卿,任君豪,孟建勇,王心义. 基于区间变权和未知测度理论的煤层底板突水危险性评价. 地下水. 2023(05): 1-6+25 . 百度学术
    11. 安律宁,陈继福,董广铭,李玉兵. 基于层次聚类模糊综合评判的矿井突水危险性评价. 煤炭与化工. 2023(10): 49-56 . 百度学术
    12. 王松松,代革联,牛超. 基于组合赋权法的煤层底板突水危险性研究. 能源与环保. 2023(11): 98-104+110 . 百度学术
    13. 陈军涛,李文昕,薛峰,王凯,张呈祥,宋涛. 主客观组合赋权的TOPSIS-RSR注浆效果综合评价方法. 煤炭科学技术. 2023(S2): 191-199 . 百度学术
    14. 方恩才,余国锋,赵一鸣. 张集煤矿厚煤层工作面底板灰岩突水监测预报研究. 煤炭科技. 2022(04): 116-121 . 百度学术

    其他类型引用(11)

图(4)  /  表(3)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  12
  • PDF下载量:  29
  • 被引次数: 25
出版历程
  • 收稿日期:  2021-10-11
  • 修回日期:  2021-12-15
  • 网络出版日期:  2022-06-17
  • 发布日期:  2022-06-24

目录

/

返回文章
返回