Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting
-
摘要: 煤层深部开采使得煤矿底板水害事故频发,传统突水危险性评价方法评价指标单一、评价结果偏离实际的弊端逐渐显露,造成众多新型评价方法涌现。以河北省华北型煤田东欢坨矿为研究对象,选取含水层性能、隔水层性能、地质条件、煤层条件的评价因素集,综合考虑10个评价因素,建立适用于东欢坨矿的底板突水危险性评价指标体系;利用层次分析法确定各指标主观权重,利用CRITIC法确定各指标客观权重,将2者耦合得到综合权重,兼顾专家主观经验与数据客观信息,保证权重确定的全面性;引入加权秩和比法,构建评价矩阵,依据指标对评价对象所产生的优劣性影响将其分为高优型指标和低优型指标,编秩计算WRSR值,对数据进行分档排序,确定安全、较安全、较危险、危险4个评价等级区间,形成评价模型;利用GIS强大的空间管理及信息处理功能,完成结果的信息展示;将评价结果与实际工程出水位置相比较,发现突水位置都在底板突水较危险区域,并与传统评价方法突水系数法相对比,证明评价模型有效。研究成果形成了煤层底板突水危险性评价新方法,丰富煤层底板突水危险性评价方法的种类,为煤矿防治水工作者提供新思路。Abstract: Deep mining of the coal seam causes frequent water hazards in the coal mine floor. As the disadvantages of traditional water inrush risk assessment methods, such as single evaluation index and deviation of the evaluation results from reality are gradually revealed, many new assessment methods are emerging. In this paper, Donghuantuo Coal Mine, a North China type coalfield, in Hebei province is taken as the research object. The evaluation factor sets including aquifer capacity, aquifuge capacity, geological conditions and coal seam conditions are selected, and with ten evaluation factors being considered, a floor water inrush risk evaluation index system applicable to Donghuantuo Coal Mine is established. AHP and CRITIC methods are adopted to determine the subjective weight and objective weight of each index, and then the two parts are coupled to obtain the comprehensive weight. In the process, the subjective experience of experts and objective data are taken into account to ensure the comprehensiveness of weight determination. By using the weighted rank sum ratio method, an evaluation matrix is constructed. And indexes are divided into high-optimality and low-optimality according to their impacts on the evaluation objects. By ranking and calculating the WRSR value, and sorting the data based on grades, an evaluation model is formed in which four evaluation levels are determined, including safe, safer, more dangerous and dangerous. The results are displayed by using powerful spatial management and information processing function of GIS. By comparing the evaluation results with water outlet positions in the actual project, it is found that these positions are in the more dangerous area of floor water inrush. The effectiveness of the evaluation model is proved by comparing the new method with the traditional water inrush coefficient method. The research forms a new method for assessing the risk of water inrush from the coal seam floor, which enriches the existing assessment methods and provides a new thought for coal mine water control workers.
-
-
表 1 各指标权重值
Table 1 Weight of each indicator
指标因素 主观权重 客观权重 综合权重 指标因素 主观权重 客观权重 综合权重 渗透性 0.076 0.104 0.047 脆塑性岩厚度比 0.054 0.110 0.046 水压 0.317 0.066 0.255 底板破坏深度 0.234 0.066 0.041 富水性 0.038 0.138 0.100 隔水层厚度 0.044 0.104 0.388 断层规模 0.123 0.127 0.049 煤层厚度 0.017 0.102 0.038 构造复杂程度 0.064 0.117 0.023 煤层埋深 0.033 0.066 0.013 表 2 各数据组评价结果
Table 2 Evaluation results of each data group
组号 指标秩次 WRSR值 Probit值 渗透性 水压 富水性 断层规模 构造复杂程度 脆塑性岩厚度比 底板破坏深度 隔水层厚度 煤层厚度 煤层埋深 组1 8 2 8 8 9 7 2 6 5 2 0.523 3 5.253 组2 1 6 10 4 6 3 6 8 9 6 0.681 9 5.842 组3 6 8 1 1 5 1 8 10 3 8 0.705 8 6.281 组4 9 9 6 7 1 9 9 7 8 9 0.760 4 8.090 组5 7 4 2 9 8 10 4 1 2 4 0.331 4 3.718 组6 4 5 4 2 4 8 5 3 10 5 0.423 5 4.158 组7 3 1 9 10 10 4 1 9 6 1 0.597 4 5.553 组8 5 7 3 6 7 2 7 4 4 7 0.494 9 4.746 组9 10 3 7 3 3 5 3 5 7 3 0.474 9 4.475 组10 2 10 5 5 2 6 10 2 1 10 0.506 5 5.000 表 3 数据组危险性等级划分
Table 3 Hazard grade classification of data groups
等级 百分数/% WRSR临界值 数据组 安全 ≥90 ≥0.705 8 组3、组4 较安全 <90 & ≥40 <0.705 8,≥0.494 9 组1、组2、组7、组8、组10 较危险 <40 & ≥20 <0.494 9,≥0.423 5 组6、组9 危险 <20 <0.423 5 组5 -
[1] 尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181. YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:Inheritance and innovation[J]. Coal Geology&Exploration,2021,49(1):170−181. DOI: 10.3969/j.issn.1001-1986.2021.01.018 YIN Shangxian, LIAN Huiqing, XU Bin, et al. Deep mining under safe water pressure of aquifer: Inheritance and innovation[J]. Coal Geology&Exploration, 2021, 49(1): 170–181. DOI: 10.3969/j.issn.1001-1986.2021.01.018
[2] 武强,解淑寒,裴振江,等. 煤层底板突水评价的新型实用方法Ⅲ:基于GIS的ANN型脆弱性指数法应用[J]. 煤炭学报,2007,32(12):1301−1306. WU Qiang,XIE Shuhan,PEI Zhenjiang,et al. A new practical methodology of the coal floor water bursting evaluating Ⅲ:The application of ANN vulnerable index method based on GIS[J]. Journal of China Coal Society,2007,32(12):1301−1306. DOI: 10.3321/j.issn:0253-9993.2007.12.014 WU Qiang, XIE Shuhan, PEI Zhenjiang, et al. A new practical methodology of the coal floor water bursting evaluating Ⅲ: The application of ANN vulnerable index method based on GIS[J]. Journal of China Coal Society, 2007, 32(12): 1301–1306. DOI: 10.3321/j.issn:0253-9993.2007.12.014
[3] 武强,张波,赵文德,等. 煤层底板突水评价的新型实用方法Ⅴ:基于GIS的ANN型、证据权型、Logistic回归型脆弱性指数法的比较[J]. 煤炭学报,2013,38(1):21−26. WU Qiang,ZHANG Bo,ZHAO Wende,et al. A new practical methodology of coal seam floor water burst evaluation Ⅴ:The comparison study among ANN,the weight of evidence and the logistic regression vulnerable index method based on GIS[J]. Journal of China Coal Society,2013,38(1):21−26. WU Qiang, ZHANG Bo, ZHAO Wende, et al. A new practical methodology of the coal floor water bursting evaluatingⅤ: Comparison of vulnerable index method of ANN, evidence weight and Logistic regression based on GIS[J]. Journal of China Coal Society, 2013, 38(1): 21–26.
[4] 武强,张志龙,张生元,等. 煤层底板突水评价的新型实用方法Ⅱ:脆弱性指数法[J]. 煤炭学报,2007,32(11):1121−1126. WU Qiang,ZHANG Zhilong,ZHANG Shengyuan,et al. A new practical methodology of the coal floor water bursting evaluating Ⅱ:The vulnerable index method[J]. Journal of China Coal Society,2007,32(11):1121−1126. DOI: 10.3321/j.issn:0253-9993.2007.11.001 WU Qiang, ZHANG Zhilong, ZHANG Shengyuan, et al. A new practical methodology of the coal floor water bursting evaluating Ⅱ : The vulnerable index method[J]. Journal of China Coal Society, 2007, 32(11): 1121–1126. DOI: 10.3321/j.issn:0253-9993.2007.11.001
[5] 尹尚先,虎维岳,刘其声,等. 承压含水层上采煤突水危险性评估研究[J]. 中国矿业大学学报,2008,37(3):311−315. YIN Shangxian,HU Weiyue,LIU Qisheng,et al. Risk assessment for water inrush from confined aquifers located under coal seams[J]. Journal of China University of Mining and Technology,2008,37(3):311−315. DOI: 10.3321/j.issn:1000-1964.2008.03.006 YIN Shangxian, HU Weiyue, LIU Qisheng, et al. Risk assessment for water inrush from confined aquifers located under coal seam[J]. Journal of China University of Mining and Technology, 2008, 37(3): 311–315. DOI: 10.3321/j.issn:1000-1964.2008.03.006
[6] 李忠建,魏久传,郭建斌,等. 运用突水系数法和模糊聚类法综合评价煤层底板突水危险性[J]. 矿业安全与环保,2010,37(1):24−26. LI Zhongjian,WEI Jiuchuan,GUO Jianbin,et al. Risk assessment for water inrush from coal seam floor based on water inrush coefficient and fuzzy clustering[J]. Mining Safety and Environmental Protection,2010,37(1):24−26. DOI: 10.3969/j.issn.1008-4495.2010.01.009 LI Zhongjian, WEI Jiuchuan, GUO Jianbin, et al. Risk assessment for water inrush from coal seam floor based on water inrush coefficient and fuzzy clustering[J]. Mining safety and environmental protection, 2010, 37(1): 24–26. DOI: 10.3969/j.issn.1008-4495.2010.01.009
[7] 赵东云,尹尚先,刘德民. 基于ANN的煤层底板突水危险性评价研究[J]. 煤炭技术,2010,29(7):68−70. ZHAO Dongyun,YIN Shangxian,LIU Demin. Study on water inrush dangerousness evalution of coal floor based on ANN[J]. Coal technology,2010,29(7):68−70. ZHAO Dongyun, YIN Shangxian, LIU Demin. Risk assessment of water inrush from coal seam floor based on ANN[J]. Coal technology, 2010, 29(7): 68–70.
[8] 徐维. 龙王沟煤矿底板突水危险性评价[D]. 廊坊: 华北科技学院, 2020. XU Wei. Risk assessment of water inrush from Longwanggou Coal Mine floor[D]. Langfang: North China Institute of Science and Technology, 2020.
[9] 施龙青,曲兴玥,韩进,等. 多模型融合评价煤层底板灰岩岩溶突水危险性[J]. 煤炭学报,2019,44(8):2484−2493. SHI Longqing,QU Xingyue,HAN Jin,et al. Multi–model fusion for assessing the risk of inrush of limestone karst water through mine floor[J]. Journal of China Coal Society,2019,44(8):2484−2493. SHI Longqing, QU Xingyue, HAN Jin, et al. Multi–model fusion for assessing the risk of inrush of limestone karst water through mine floor[J]. Journal of China Coal Society, 2019, 44(8): 2484–2493.
[10] 田凤调. 秩和比法及其应用[M]. 北京: 中国统计出版社, 1993. [11] 徐俊平. 基于加权秩和比法的高压配电网规划评价方法及应用[D]. 北京: 华北电力大学, 2015. XU Junping. High voltage distribution network planning comprehensive evaluation and application research: Based on weighted rank sum ration method[D]. Beijing: North China Electric Power University, 2015.
[12] 苗继承. 基于加权秩和比法的汽车物流服务商选择方法研究[D]. 西安: 长安大学, 2010. MIAO Jicheng. A study on selective methods of automotive logistics service providers based on the WRSR [D]. Xi’an: Chang’an University, 2010.
[13] 武强,张志龙,马积福. 煤层底板突水评价的新型实用方法Ⅰ:主控指标体系的建设[J]. 煤炭学报,2007,32(1):42−47. WU Qiang,ZHANG Zhilong,MA Jifu. A new practical methodology of the coal floor water bursting evaluating Ⅰ:The master controlling index system construction[J]. Journal of China Coal Society,2007,32(1):42−47. DOI: 10.3321/j.issn:0253-9993.2007.01.009 WU Qiang, ZHANG Zhilong, MA Jifu. A new practical methodology of the coal floor water bursting evaluatingⅠ: The master controlling index system construction[J]. Journal of China Coal Society, 2007, 32(1): 42–47. DOI: 10.3321/j.issn:0253-9993.2007.01.009
[14] 张晓亮. 熵权耦合层次分析赋权在煤层底板突水评价中的应用[J]. 煤田地质与勘探,2017,45(3):91−95. ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. Coal Geology & Exploration,2017,45(3):91−95. DOI: 10.3969/j.issn.1001-1986.2017.03.017 ZHANG Xiaoliang. Application of entropy weight method and analytic hierarchy process in evaluation of water inrush from coal seam floor[J]. Coal Geology & Exploration, 2017, 45(3): 91–95. DOI: 10.3969/j.issn.1001-1986.2017.03.017
[15] 刘泽威,刘其声,刘洋. 煤层底板隐伏断层分类及突水防治措施[J]. 煤田地质与勘探,2020,48(2):141−146. LIU Zewei,LIU Qisheng,LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology & Exploration,2020,48(2):141−146. DOI: 10.3969/j.issn.1001-1986.2020.02.022 LIU Zewei, LIU Qisheng, LIU Yang. Classification of hidden faults in coal seam floor and measures for water inrush prevention[J]. Coal Geology&Exploration, 2020, 48(2): 141–146. DOI: 10.3969/j.issn.1001-1986.2020.02.022
[16] 邱梅,施龙青,滕超,等. 赵官井田10煤层底板突水危险性评价[J]. 煤田地质与勘探,2015,43(3):61−65. QIU Mei,SHI Longqing,TENG Chao,et al. Evaluation of water inrush risk for No.10 coal seam floor of Zhaoguan mine field[J]. Coal Geology & Exploration,2015,43(3):61−65. DOI: 10.3969/j.issn.1001-1986.2015.03.012 QIU Mei, SHI Longqing, TENG Chao, et al. Evaluation of water inrush risk for No. 10 coal seam floor of Zhaoguan mine field[J]. Coal Geology & Exploration, 2015, 43(3): 61–65. DOI: 10.3969/j.issn.1001-1986.2015.03.012
[17] 朱晓华. 地理空间信息的分形与分维[M]. 北京: 测绘出版社, 2007. [18] 尹尚先,吴志远. 钱家营井田构造复杂程度定量评价[J]. 煤矿安全,2019,50(5):218−221. YIN Shangxian,WU Zhiyuan. Quantitative evaluation of structural complexity of Qianjiaying mine field[J]. Safety in Coal Mines,2019,50(5):218−221. YIN Shangxian, WU Zhiyuan. Quantitative evaluation of structural complexity of Qianjiaying mine field[J]. Safety in Coal Mines, 2019, 50(5): 218–221.
[19] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010. [20] 李江华, 许延春, 谢小锋, 等. 采高对煤层底板破坏深度的影响[J]. 煤炭学报, 2015, 40(增刊2): 303–310. LI Jianghua, XU Yanchun, XIE Xiaofeng, et al. Influence of mining height on coal seam floor failure depth[J]. Journal of China Coal Society, 205, 40(Sup.2): 303–310.
[21] 魏久传,许玉阳,谢道雷,等. 基于距离函数组合赋权法的突水危险性评价[J]. 中国矿业,2021,30(4):162−167. WEI Jiuchuan,XU Yuyang,XIE Daolei,et al. The risk assessment of water bursting based on combination rule of distance function[J]. China Mining Magazine,2021,30(4):162−167. WEI Jiuzhuan, XU Yuyang, XIE Daolei, et al. Risk assessment of water inrush based on distance function combination weighting method[J]. China’s Mining, 2021, 30(4): 162–167.