新疆后峡盆地中–低阶煤煤层气成藏模式

涂志民, 车延前, 李鹏, 林文姬

涂志民,车延前,李鹏,等. 新疆后峡盆地中–低阶煤煤层气成藏模式[J]. 煤田地质与勘探,2022,50(5):43−49. DOI: 10.12363/issn.1001-1986.21.09.0504
引用本文: 涂志民,车延前,李鹏,等. 新疆后峡盆地中–低阶煤煤层气成藏模式[J]. 煤田地质与勘探,2022,50(5):43−49. DOI: 10.12363/issn.1001-1986.21.09.0504
TU Zhimin,CHE Yanqian,LI Peng,et al. Accumulation mode of middle-low rank coalbed methane in Houxia Basin,Xinjiang[J]. Coal Geology & Exploration,2022,50(5):43−49. DOI: 10.12363/issn.1001-1986.21.09.0504
Citation: TU Zhimin,CHE Yanqian,LI Peng,et al. Accumulation mode of middle-low rank coalbed methane in Houxia Basin,Xinjiang[J]. Coal Geology & Exploration,2022,50(5):43−49. DOI: 10.12363/issn.1001-1986.21.09.0504

 

新疆后峡盆地中–低阶煤煤层气成藏模式

基金项目: 国家科技重大专项课题(2016ZX05041-005);中国石油前瞻性基础性技术攻关项目(2021DJ2306-006)
详细信息
    作者简介:

    涂志民,1979年生,男,江西上饶人,硕士,高级工程师,从事煤层气勘探地质研究工作. E-mail:tuzhimin@petrochina.com.cn

  • 中图分类号: TD163+.1;TE37

Accumulation mode of middle-low rank coalbed methane in Houxia Basin,Xinjiang

  • 摘要: 低阶煤层气在国外有规模开发成功的案例,我国低阶煤层气资源丰富,但其勘探开发进展缓慢。新疆后峡盆地煤层气勘探程度较低,为进一步认识后峡盆地中–低阶煤煤层气成藏条件,指导勘探实践,根据研究区内地震、地质及已钻探井的煤岩分析化验和排采生产资料进行总结分析。结果表明,该区构造较为复杂,煤层厚度较大(4.1~24.3 m),发育较稳定,含气量差异较大(1.16~12.30 m3/t),物性较好,渗透率(1.61~13.30)×10−3 μm2,渗透性较好;并且存在热成因、次生热成因、混合成因及生物成因4种煤层气成因类型,结合构造演化、水文地质及煤层顶底板保存条件,形成了深层热成因、常规圈闭次生热成因及中浅斜坡生物气3种成藏模式,每一种成藏模式代表了不同的煤层气富集过程。认为研究区中–低阶煤煤层气在匹配的构造、水文及顶底板封盖条件下能够形成有利的资源富集区;3种成藏模式中,深层热成因及常规圈闭次生热成因成藏模式更有利于聚集成藏,其对应的区域是今后勘探开发有利区。
    Abstract: There are successful cases of large-scale CBM development of low-rank coal abroad. Though China is rich in low-rank CBM resources, their exploration and development progress is slow. Considering the low exploration degree and for the purpose of further understanding the accumulation conditions of medium-low rank CBM and guiding exploration practice in Houxia Basin, seismic and geological analysis, as well as coal petrography analysis and drainage production data of drilled wells are carried out in the study area. The results show that the coal seams are characterized by complex structure, large thickness (4.1-24.3 m), stable development, large difference in gas content (1.16-12.30 m3/t), good physical properties and large permeability (1.61-13.30)×10−3 μm2. There are four genetic types of CBM: thermal origin, secondary thermal origin, mixed origin and biological origin. Under this condition, combined with structural evolution, hydrogeology and preservation conditions of the coal seam roof and floor, three accumulation models of deep thermal origin, secondary thermal origin of conventional traps and medium shallow slope biogenic gas are formed. Each mode represents the concentration processes of different types CBM. It is considered that the medium-low rank CBM in this study area can form a favorable resource concentration area under the matched structural, hydrological, and roof and floor sealing conditions. Among the accumulation modes, deep thermal origin and secondary thermal origin of conventional traps are more favorable for accumulation, and the corresponding areas are favorable for future exploration and development.
  • 图  1   后峡盆地西山窑组底界构造

    Fig.  1   Structural of the bottom boundary of Xishanyao Formation in Houxia Basin

    图  2   研究区西山窑组含气量分布

    Fig.  2   Gas content distribution of Xishanyao Formation in the study area

    图  3   后峡盆地煤层气成因类型判别

    Fig.  3   Genetic type discrimination of coalbed methane in Houxia Basin

    图  4   后峡盆地G2井地层埋藏史曲线

    Fig.  4   Stratigraphic burial history curves of well G2 in Houxia Basin

    图  5   后峡盆地煤层气成藏模式

    Fig.  5   Schematic diagram of accumulation modes in Houxia Basin

    表  1   后峡盆地主要煤层显微组分特征

    Table  1   Maceral characteristics of main coal seams in Houxia Basin


    显微组分体积分数/%
    镜质组惰质组壳质组
    B7 50.20~71.09/60.65 17.43~33.00/25.22 0.40~1.78/1.09
    B8 58.03~76.36/64.92 17.02~36.25/29.30 1.74~4.02/2.94
    B9 48.55~63.84/56.20 29.11~43.64/36.38 1.26~3.09/2.20
    注:50.20~71.09/60.65表示最小~最大值/平均值,其他同。
    下载: 导出CSV

    表  2   研究区气样分析、含气量及生产数据

    Table  2   Gas sample analysis, gas content and production data in the study area

    井号δ13C1/‰δDCH4/‰φ(CH4)/%φ(C2H6)/%φ(C3H8)/%φ(CH4)/φ(C2H6+C3H8)含气量/(m3·t−1)临储比目前最高产量/(m3·d−1)
    G2−45.3−218.786.1140.4680.101151.347.330.671 100
    G3−49.7−229.194.1290.3460.168183.1311.700.99900
    G5−57.8−257.393.8870.1110.058555.545.200.41500
    A1−48.6−215.682.5221.2910.03062.4712.300.771 330
    T1−52.4−248.294.7830.4160.164163.421.350.25100
    下载: 导出CSV
  • [1] 邹才能,张国生,杨智,等. 非常规油气概念、特征、潜力及技术:兼论非常规油气地质学[J]. 石油勘探与开发,2013,40(4):385−399. ZOU Caineng,ZHANG Guosheng,YANG Zhi,et al. Geological concepts,characteristics,resource potential and key techniques of unconventional hydrocarbon:On unconventional petroleum geology[J]. Petroleum Exploration and Development,2013,40(4):385−399. DOI: 10.11698/PED.2013.04.01
    [2] 李五忠,田文广,孙斌,等. 低煤阶煤层气成藏特点与勘探开发技术[J]. 天然气工业,2008,28(3):23−24. LI Wuzhong,TIAN Wenguang,SUN Bin,et al. Characteristics of pooling and exploration and development of CBM in low–rank coals[J]. Natural Gas Industry,2008,28(3):23−24. DOI: 10.3787/j.issn.1000-0976.2008.03.006
    [3] 孙粉锦,田文广,陈振宏,等. 中国低煤阶煤层气多元成藏特征及勘探方向[J]. 天然气工业,2018,38(6):10−18. SUN Fenjin,TIAN Wenguang,CHEN Zhenhong,et al. Low−rank coalbed methane gas pooling in China:Characteristics and exploration orientation[J]. Natural Gas Industry,2018,38(6):10−18. DOI: 10.3787/j.issn.1000-0976.2018.06.002
    [4] 王涛,邓泽,胡海燕,等. 国内外低阶煤煤层气储层特征对比研究[J]. 煤炭科学技术,2019,47(9):41−50. WANG Tao,DENG Ze,HU Haiyan,et al. Study on characteristics comparison of low rank coal coalbed methane reservoirs at home and abroad[J]. Coal Science and Technology,2019,47(9):41−50.
    [5] 俞益新,唐玄,吴晓丹,等. 澳大利亚苏拉特盆地煤层气地质特征及富集模式[J]. 煤炭科学技术,2018,46(3):160−167. YU Yixin,TANG Xuan,WU Xiaodan,et al. Geological characteristics and accumulation mode of coalbed methane in Surat basin of Australia[J]. Coal Science and Technology,2018,46(3):160−167.
    [6] 张玉垚,程晓茜,弓小平,等. 新疆典型矿区低煤阶煤层气成藏差异对比研究[J]. 中国矿业,2019,28(6):172−179. ZHANG Yuyao,CHENG Xiaoqian,GONG Xiaoping,et al. Comparative research on the difference of low rank CBM accumulation in typical Xinjiang mining area[J]. China Mining Magazine,2019,28(6):172−179.
    [7] 时小松,文桂华,张继坤,等. 天山后峡盆地后峡区块煤层气勘探潜力[J]. 天然气工业,2018,38(增刊1):1−4. SHI Xiaosong,WEN Guihua,ZHANG Jikun,et al. Exploration potential of coalbed methane in Houxia block of Tianshan Houxia basin[J]. Natural Gas Industry,2018,38(Sup.1):1−4.
    [8]

    KOTARBA M J. Composition and origin of coalbed gases in the Upper Silesian and Lublin Basins,Poland[J]. Organic Geochemistry,2001,32(1):163−180. DOI: 10.1016/S0146-6380(00)00134-0

    [9]

    SCOTT A R. Hydrogeologic factors affecting gas content distribution in coal beds[J]. International Journal of Coal Geology,2002,50(1/2/3/4):363−387. DOI: 10.1016/S0166-5162(02)00135-0

    [10] 田文广,邵龙义,张继东,等. 鄂尔多斯盆地南部侏罗系煤层气成因探究[J]. 中国矿业,2015,24(5):81−85. TIAN Wenguang,SHAO Longyi,ZHANG Jidong,et al. Analysis of genetic types of the coal bed methane of Jurassic Formation,southern Ordos Basin[J]. China Mining Magazine,2015,24(5):81−85. DOI: 10.3969/j.issn.1004-4051.2015.05.017
    [11] 陶明信. 煤层气地球化学研究现状与发展趋势[J]. 自然科学进展,2005,15(6):648−652. TAO Mingxin. Research status and development trend of coalbed methane geochemistry[J]. Progress in Natural Science,2005,15(6):648−652. DOI: 10.3321/j.issn:1002-008X.2005.06.002
    [12]

    WHITICAR M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161(1/2/3):291−314. DOI: 10.1016/S0009-2541(99)00092-3

    [13] 巢海燕,王延斌. 鄂尔多斯盆地东南缘临汾区块煤层气成因及其影响[J]. 煤炭学报,2016,41(7):1769−1777. CHAO Haiyan,WANG Yanbin. Origin of coalbed methane and its influence in Linfen,southeastern Ordos basin[J]. Journal of China Coal Society,2016,41(7):1769−1777.
    [14] 王相业,孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因[J]. 煤田地质与勘探,2020,48(4):156−164. WANG Xiangye,SUN Baoping. Geochemical characteristics and their origin of CBM in Xingxian area,Ordos Basin[J]. Coal Geology & Exploration,2020,48(4):156−164. DOI: 10.3969/j.issn.1001-1986.2020.04.022
    [15] 方世虎,郭召杰,贾承造,等. 准噶尔盆地南缘中–新生界沉积物重矿物分析与盆山格局演化[J]. 地质科学,2006,41(4):648−662. FANG Shihu,GUO Zhaojie,JIA Chengzao,et al. Meso–cenozoic heavy minerals’ assem blages in the southern Junggar Basin and its implications for basin–orogen pattern[J]. Chinese Journal of Geology,2006,41(4):648−662. DOI: 10.3321/j.issn:0563-5020.2006.04.008
    [16] 郭召杰,吴朝东,张志诚,等. 乌鲁木齐后峡地区侏罗系沉积特征、剥露过程及中新生代盆山关系讨论[J]. 高校地质学报,2005,11(4):558−567. GUO Zhaojie,WU Chaodong,ZHANG Zhicheng,et al. Mesozoic–cenozoic relationships between Tianshan Mountain and Peripheral basins:Evidences from sedimentology and exhumation of Jurassic in Houxia area,Urumqi[J]. Geological Journal of China Universities,2005,11(4):558−567. DOI: 10.3969/j.issn.1006-7493.2005.04.012
    [17] 李荣西,张锡云,金奎励. 用镜质体反射率重建沉积盆地构造演化特征[J]. 矿物学报,2001,21(4):705−709. LI Rongxi,ZHANG Xiyun,JIN Kuili. Application of vitrinite reflectance to reconstruction of the tectonic features of the Bohai gulf basin[J]. Acta Mineralogica Sinica,2001,21(4):705−709.
    [18] 邱楠生,杨海波,王绪龙. 准噶尔盆地构造—热演化特征[J]. 地质科学,2002,37(4):423−429. QIU Nansheng,YANG Haibo,WANG Xulong. Tectono–thermal evolution in the Junggar Basin[J]. Chinese Journal of Geology,2002,37(4):423−429. DOI: 10.3321/j.issn:0563-5020.2002.04.005
    [19] 叶建平,武强,王子和. 水文地质条件对煤层气赋存的控制作用[J]. 煤炭学报,2001,26(5):459−462. YE Jianping,WU Qiang,WANG Zihe. Controlled characteristics of hydrogeological conditions on the coalbed methane migration and accumulation[J]. Journal of China Coal Society,2001,26(5):459−462. DOI: 10.3321/j.issn:0253-9993.2001.05.003
    [20] 刘洪林,李景明,王红岩,等. 水文地质条件对低煤阶煤层气成藏的控制作用[J]. 天然气工业,2008,28(7):20−22. LIU Honglin,LI Jingming,WANG Hongyan,et al. Control of hydrogeological conditions on accumulation of coalbed methane in low–rank coal[J]. Natural Gas Industry,2008,28(7):20−22. DOI: 10.3787/j.issn.1000-0976.2008.07.006
    [21] 朱文静. 乌鲁木齐后峡地区水环境状况及不利水文条件分析[J]. 地下水,2020,42(4):168−170. ZHU Wenjing. Analysis of water environment and adverse hydrological conditions in Houxia area of Urumqi[J]. Ground Water,2020,42(4):168−170.
    [22] 刘大锰,李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术,2014,42(6):19−24. LIU Dameng,LI Junqian. Main geological controls on distribution and occurence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology,2014,42(6):19−24.
    [23] 李传亮. 毛管压力是油气运移的动力吗?:与李明诚教授商榷[J]. 岩性油气藏,2008,20(3):17−20. LI Chuanliang. Is capillary pressure the driving force in oil and gas migration?:Discussion with Prof. Li Mingcheng[J]. Lithologic Reservoirs,2008,20(3):17−20. DOI: 10.3969/j.issn.1673-8926.2008.03.004
    [24] 唐俊红,高忆平,施明才,等. 含油气盆地微渗漏甲烷运移机制研究进展[J]. 杭州电子科技大学学报(自然科学版),2019,39(2):64−69. TANG Junhong,GAO Yiping,SHI Mingcai,et al. A preliminary review of gas migration mechanisms of methane microseepage in hydrocarbon–prone areas[J]. Journal of Hangzhou Dianzi University(Natural Sciences),2019,39(2):64−69.
    [25] 王勃,巢海燕,郑贵强,等. 高、低煤阶煤层气藏地质特征及控气作用差异性研究[J]. 地质学报,2008,82(10):1396−1401. WANG Bo,CHAO Haiyan,ZHENG Guiqiang,et al. Differences of coalbed methane geological characteristics and gas–controlling function between low rank coal and high rank coal[J]. Acta Geologica Sinica,2008,82(10):1396−1401. DOI: 10.3321/j.issn:0001-5717.2008.10.014
  • 期刊类型引用(3)

    1. 齐跃明,周沛,周来,蒋丹,杨雨晴,刘延卓. 考虑采动效应的闭坑矿井水硫酸盐污染规律. 煤田地质与勘探. 2024(04): 89-100 . 本站查看
    2. 张耀文,张莉丽,宋颖霞,李海君. 采动作用下煤矿地下水流场的演变规律. 科学技术与工程. 2021(12): 4830-4837 . 百度学术
    3. 刘彦青. 动态回采工作面煤壁瓦斯涌出数值计算及现场应用. 煤炭科学技术. 2021(06): 195-204 . 百度学术

    其他类型引用(2)

图(5)  /  表(2)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  31
  • PDF下载量:  72
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-09-13
  • 修回日期:  2021-12-07
  • 网络出版日期:  2022-05-06
  • 发布日期:  2022-05-24

目录

    /

    返回文章
    返回