川渝地区煤的石墨化潜势研究

李靖, 王路, 刘永旺, 栾进华, 张瑞刚, 张森, 王安民

李靖,王路,刘永旺,等.川渝地区煤的石墨化潜势研究[J].煤田地质与勘探,2022,50(2):9−16. DOI: 10.12363/issn.1001-1986.21.02.0095
引用本文: 李靖,王路,刘永旺,等.川渝地区煤的石墨化潜势研究[J].煤田地质与勘探,2022,50(2):9−16. DOI: 10.12363/issn.1001-1986.21.02.0095
LI Jing,WANG Lu,LIU Yongwang,et al.Research on the graphitization potential of coal in Sichuan and Chongqing[J].Coal Geology & Exploration,2022,50(2):9−16. DOI: 10.12363/issn.1001-1986.21.02.0095
Citation: LI Jing,WANG Lu,LIU Yongwang,et al.Research on the graphitization potential of coal in Sichuan and Chongqing[J].Coal Geology & Exploration,2022,50(2):9−16. DOI: 10.12363/issn.1001-1986.21.02.0095

 

川渝地区煤的石墨化潜势研究

基金项目: 重庆市科研机构绩效激励引导专项项目(cstc2020jxjl90002);2020年度山西省高等学校科技创新项目(2020L0730);山西省科技重大专项资助项目(20191102002)
详细信息
    作者简介:

    李靖,1983年生,女,山西太原人,博士,副教授,从事能源地质方向的研究工作. E-mail: cat03510431@163.com

    通讯作者:

    王路,1990年生,男,山西长治人,博士,讲师,从事煤系石墨矿产地质与开发利用研究工作. E-mail:wanglucumtb@126.com

  • 中图分类号: P618.11;P619.25+2

Research on the graphitization potential of coal in Sichuan and Chongqing

  • 摘要: 煤及煤系石墨化利用对于增强石墨矿产的战略保障能力、促进煤系矿产资源高效利用和推动煤炭企业转型升级等均具有重要意义。在能源矿产改革转型的关键时期,为了厘清川渝地区煤的石墨化潜势,在梳理分析煤的石墨化、煤基碳材料前驱体选择和川渝地区煤田地质概况的基础上,通过对川渝地区主要赋存煤类、煤质和显微组分特征的分析,从影响煤石墨化的内在因素和煤基碳材料的需求出发,采用主成分分析法探讨了川渝地区煤基碳材料前景和煤系石墨资源赋存潜力。结果表明:研究区煤的显微组分以镜质组为主,低灰、低硫,演化程度更高的无烟煤更易于石墨化,煤石墨化后的产物则是制备碳材料的极佳前驱体;根据主成分分析的定量评价结果,可将川渝地区煤系石墨资源潜力区带划分为Ⅰ级优势区、Ⅱ级良好区和Ⅲ级潜力区。四川雅安−攀西Ⅰ级区带三叠系上统须家河组煤具有变质程度高、低灰、低硫特征,龙门山构造岩浆带是煤石墨化的外在条件,是煤系石墨矿产资源优势赋存区和制备煤基碳材料的优选资源;渝东北Ⅱ级区带和渝东南Ⅱ级区带具有构造条件复杂、煤演化程度高的特点,为煤系石墨资源赋存良好区;南桐松藻Ⅲ级区带和四川芙蓉−古叙Ⅲ级区带则为煤系石墨资源的潜力区。煤系石墨的潜力研究是能源矿产由粗放型利用向高端新型材料精细化应用转变的重要桥梁,为实现煤炭资源高价值、绿色开发利用提供了指导方向。
    Abstract: The graphitization of coal is beneficial to enhancing the strategic guarantee ability of graphite resources and promoting the efficient utilization of coal measures mineral resources and transformation and upgrading of coal enterprises. The development potential of coal-based graphite resources in Sichuan and Chongqing is evaluated in the critical period of energy and mineral reform and transformation. On the basis of the analysis of coal graphitization, the precursors for coal-based carbon materials and coalfield geology, the major coal types, coal quality and characteristics of macerals, Principal Component Analysis(PCA) is applied to explore the development potential of coal-based graphite in Sichuan and Chongqing in view of internal factors and the requirement of carbon materials. The results show that the microscopic composition of the coal in the study area is mainly vitrinite with low ash and low sulfur, the highly metamorphic anthracite is easier to graphitize, and the product is an excellent precursor for preparing carbon materials. According to the quantitative evaluation results of PCA, the potential zones for preparing coal-based carbon materials can be divided into the superior areas(Ⅰ), good areas(Ⅱ) and potential areas(Ⅲ). The coal of Upper Triassic Xujiahe Formation in Ya’an-Panxi areas(I), Sichuan Province, is characterized by the high metamorphism, low ash and low sulfur. The Longmenshan tectonic-magmatic belt is the external factor for coal graphitization, which is the potential area for coal-based graphite sources and preferred resources for coal-based carbon materials. The northeastern and southeastern Chongqing areas(Ⅱ) are characterized by complex tectonic conditions and highly metamorphic coal, which are good areas for the accumulation of coal-based graphite. Songzao Coal Mine(Ⅲ) in Nantong Coalfield and Furong-Guxu mines(Ⅲ) in Sichuan Province, are all potential areas for coal-based graphite. Research on the potential of coal-based graphite is an important bridge for the transition from extensive utilization of energy and minerals to refined application of high-end new materials, providing guidance for the realization of high-value, green development and utilization of coal-resources.
  • 图  1   川渝地区无烟煤分布(蓝色部分为无烟煤分布区)

    Fig.  1   Distribution of anthracite(blue color) in Sichuan and Chongqing

    图  2   川渝地区煤基碳材料潜力区带划分

    Fig.  2   Potential areas division of coal-based carbon materials in Sichuan and Chongqing

    表  1   煤系石墨鉴别指标体系 [14]

    Table  1   Identification indexes of coal-based graphite[14]

    类型基础指标精确指标
    $\omega $(Vdaf)/%Rmax/%d002/nmgG峰位/cm−1R2
    煤系石墨石墨<4.0>6.5 <0.338>0.7<1 585<0.50
    半石墨0.338~0.344>0~0.71 585~1 5950.50~0.60
    >2.0<7.0>0.344≤0>1 595>0.60
    下载: 导出CSV

    表  2   川渝地区煤基碳材料前驱体评价参数

    Table  2   Evaluation indexes of precursors for coal-based graphite in Sichuan and Chongqing

    地区地层矿区Rmax/%灰分/%硫/%镜质组/%惰质组/%固定碳/%
    重庆P3l南桐松藻2.3225.024.8083.06.881.45
    渝东北2.2611.708.6778.210.186.47
    渝东南2.1917.206.4480.36.783.31
    华蓥山1.4522.134.3870.816.988.44
    永荣1.2324.985.8475.29.285.41
    渝东1.8828.154.2972.35.872.96
    四川P3l筠连2.8222.252.7158.723.886.54
    芙蓉2.5423.313.4581.46.387.01
    古叙2.6626.830.8776.513.885.72
    华蓥山1.5826.234.1769.523.883.05
    四川T3xj隆泸1.2427.92.5161.423.381.66
    达竹1.1819.450.6958.927.879.64
    广旺1.3124.331.6875.811.573.15
    资威1.1622.761.3552.824.272.32
    雅荥1.6028.950.5978.110.285.98
    宝鼎1.7524.20.4468.528.188.19
    红坭1.2221.620.5371.215.183.84
    盐源1.6925.441.0280.211.282.05
    川中1.3721.671.2658.522.982.36
    天全5.3519.320.6680.117.389.62
    下载: 导出CSV

    表  3   参数值的特征值和方差贡献率

    Table  3   Latent roots and variance contributes of evaluation indexes

    主成分初始特征值及方差贡献率
    特征值方差贡献率%累积%
    12.47941.31141.311
    21.38623.09764.409
    31.04617.42881.837
    下载: 导出CSV

    表  4   主成分载荷值

    Table  4   Component matrix

    评价参数主成分
    123
    反射率0.2070.4610.269
    固定碳含量0.1860.519−0.136
    灰分含量−0.204−0.0700.704
    镜质组含量0.361−0.0500.292
    惰质组含量−0.3100.355−0.344
    硫分含量0.241−0.325−0.408
    下载: 导出CSV

    表  5   主成分分析法评价结果

    Table  5   Optimization results of favorable areas by principal component analysis

    地区地层矿区FAC1_1FAC2_1FAC3_1FAC综合得
    分排序
    重庆P3l南桐松藻1.03−0.730.6521.555
    渝东北1.80−0.42−2.3223.452
    渝东南1.44−0.71−0.8922.723
    华蓥山0.270.20−0.9520.6610
    永荣0.63−0.84−0.3120.898
    渝东0.06−1.770.9718.2114
    四川P3l筠连−0.841.140.4617.0817
    芙蓉0.880.041.5121.964
    古叙0.240.751.0320.927
    华蓥山−0.420.01−0.5317.9215
    T3xj隆泸−1.08−0.06−0.3016.6019
    达竹−1.290.29−1.4016.6918
    广旺−0.26−1.360.5918.4313
    资威−2.09−0.860.3513.0720
    雅荥0.110.101.2920.996
    宝鼎−0.711.37−0.4718.9212
    红坭−0.230.07−0.2120.1911
    盐源0.22−0.240.8820.799
    川中−1.000.32−1.0017.5516
    天全1.242.710.6423.601
    下载: 导出CSV
  • [1] 曹代勇,王路,刘志飞,等. 我国煤系石墨研究及资源开发利用前景[J]. 煤田地质与勘探,2020,48(1):1−11. DOI: 10.3969/j.issn.1001-1986.2020.01.001

    CAO Daiyong,WANG Lu,LIU Zhifei,et al. The research status and prospect of coal−based graphite in China[J]. Coal Geology & Exploration,2020,48(1):1−11. DOI: 10.3969/j.issn.1001-1986.2020.01.001

    [2] 曹代勇,张鹤,董业绩,等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘,2017,24(5):317−327.

    CAO Daiyong,ZHANG He,DONG Yeji,et al. Research status and key orientation of coal−based graphite mineral geology[J]. Earth Science Frontiers,2017,24(5):317−327.

    [3] 王路,董业绩,张鹤,等. 煤成石墨化作用的影响因素及其实验验证[J]. 矿业科学学报,2018,3(1):9−19.

    WANG Lu,DONG Yeji,ZHANG He,et al. Factors affecting graphitization of coal and the experimental validation[J]. Journal of Mining Science and Technology,2018,3(1):9−19.

    [4] 王路,彭扬文,曹代勇,等. 湖南鲁塘煤系石墨矿区构造格局及控矿机制[J]. 煤田地质与勘探,2020,48(1):48−54. DOI: 10.3969/j.issn.1001-1986.2020.01.007

    WANG Lu,PENG Yangwen,CAO Daiyong,et al. The tectonic framework and controlling mechanism of coal−based graphite in Lutang mining area, Hunan Province[J]. Coal Geology & Exploration,2020,48(1):48−54. DOI: 10.3969/j.issn.1001-1986.2020.01.007

    [5] 闫云飞,高伟,杨仲卿,等. 煤基新材料–煤基石墨烯的制备及石墨烯在导热领域应用研究进展[J]. 煤炭学报,2020,45(1):443−454.

    YAN Yunfei,GAO Wei,YANG Zhongqing,et al. Preparation of coal−based graphene and application research advances of graphene in the field of thermal conduction[J]. Journal of China Coal Society,2020,45(1):443−454.

    [6]

    WANG Lu, QIN Rongfang, LI Yu, et al. On the difference of graphitization behavior between vitrinite−and inertinite−rich anthracites during heat treatment[J]. Energy Sources, Part A: Recovery, Utilization, and Environment Effects, 2019. DOI: 10.1080/15567036.2019.1656681.

    [7] 张亚婷,周安宁,张晓欠,等. 以太西无烟煤为前驱体制备煤基石墨烯的研究[J]. 煤炭转化,2013,36(4):57−61. DOI: 10.3969/j.issn.1004-4248.2013.04.013

    ZHANG Yating,ZHOU Anning,ZHANG Xiaoqian,et al. Preparation of the graphene from Taixi anthracite[J]. Coal Conversion,2013,36(4):57−61. DOI: 10.3969/j.issn.1004-4248.2013.04.013

    [8] 华小虎,王晓刚. 无烟煤超高温石墨化产物的物相分析[J]. 煤炭技术,2016,35(11):308−310.

    HUA Xiaohu,WANG Xiaogang. Phase analysis of anthracite−graphitization−product by ultra−high temperature[J]. Coal Geology,2016,35(11):308−310.

    [9]

    WANG Lu,CAO Daiyong,PENG Yangwen,et al. Strain–induced graphitization mechanism of coal−based graphite from Luang,Hunan Province,China[J]. Minerals,2019,9(10):617. DOI: 10.3390/min9100617

    [10] 李阔,刘钦甫,宋波涛,等. 湖南新化煤系石墨结构演化及其热反应行为[J]. 煤田地质与勘探,2020,48(1):42−47. DOI: 10.3969/j.issn.1001-1986.2020.01.006

    LI Kuo,LIU Qinfu,SONG Botao,et al. Investigation on structural evolution and thermal reaction of coal–based graphite from Xinhua County, Hunan Province[J]. Coal Geology & Exploration,2020,48(1):42−47. DOI: 10.3969/j.issn.1001-1986.2020.01.006

    [11] 李焕同,曹代勇,张卫国,等. 高煤级煤石墨化轨迹阶段性的XRD和Raman光谱表征[J]. 光谱学与光谱分析,2021,41(8):2491−2498.

    LI Huantong,CAO Daiyong,ZHANG Weiguo,et al. XRD and Raman spectroscopy characterization of graphitization trajectories of high−rank coal[J]. Spectroscopy and Spectral Analysis,2021,41(8):2491−2498.

    [12] 丁正云,王路,曾欢,等. 福建大田–漳平地区构造–热对煤系石墨成矿及赋存的控制探讨[J]. 煤田地质与勘探,2020,48(1):55−61. DOI: 10.3969/j.issn.1001-1986.2020.01.008

    DING Zhengyun,WANG Lu,ZENG Huan,et al. The control of mineralization and occurrence of coal−based graphite by tectonic−heat in Zhangping−Datian area,Fujian[J]. Coal Geology & Exploration,2020,48(1):55−61. DOI: 10.3969/j.issn.1001-1986.2020.01.008

    [13] 王路,曹代勇,丁正云,等. 闽西南地区煤成石墨的控制因素与成矿区带划分[J]. 煤炭学报,2020,45(8):2865−2871.

    WANG Lu,CAO Daiyong,DING Zhengyun,et al. Controlling factors and metallogenic belts of coal−based graphite in the south−western Fujian Province[J]. Journal of China Coal Society,2020,45(8):2865−2871.

    [14] 曹代勇,魏迎春,李阳,等. 煤系石墨鉴别指标厘定及分类分级体系构建[J]. 煤炭学报,2021,46(6):1833−1846.

    CAO Daiyong,WEI Yingchun,LI Yang,et al. Determination of identification index and construction of classification and classification system of coal measures graphite[J]. Journal of China Coal Society,2021,46(6):1833−1846.

    [15] 秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州: 中国矿业大学出版社, 1994.
    [16] 李久庆,秦勇,陈义林,等. 我国煤基石墨资源与制烯潜力[J]. 煤炭科学技术,2020,48(增刊1):261−269.

    LI Jiuqing,QIN Yong,CHEN Yilin,et al. Coal−based graphite resources and its graphene preparation potential in China[J]. Coal Science and Technology,2020,48(Sup.1):261−269.

    [17] 李瑞青,唐跃刚,郇璇,等. 煤基石墨烯原料与制备技术研究进展[J]. 煤田地质与勘探,2020,48(5):1−15. DOI: 10.3969/j.issn.1001-1986.2020.05.001

    LI Ruiqing,TANG Yuegang,HUAN Xuan,et al. Progress in the research on the raw materials and the preparation techniques of coal−based graphene[J]. Coal Geology & Exploration,2020,48(5):1−15. DOI: 10.3969/j.issn.1001-1986.2020.05.001

    [18] 王路. 煤系石墨的构造—热成矿机制研究[D]. 北京: 中国矿业大学(北京), 2020.

    WANG Lu. Study on tectonic–thermal mineralization mechanism of coal−based graphite[D]. Beijing: China University of Mining and Technology(Beijing), 2020.

    [19] 董业绩,曹代勇,王路,等. 地质勘查阶段煤系石墨与无烟煤的划分指标探究[J]. 煤田地质与勘探,2018,46(1):8−12. DOI: 10.3969/j.issn.1001-1986.2018.01.002

    DONG Yeji,CAO Daiyong,WANG Lu,et al. Indicators for partitioning graphite and anthracite in coal measures during geological exploration phase[J]. Coal Geology & Exploration,2018,46(1):8−12. DOI: 10.3969/j.issn.1001-1986.2018.01.002

    [20]

    FRANKLIN R E. Crystallite growth in graphitizing and non–graphitizing carbons[J]. Proceedings of the Royal Society A Mathematical, Physical & Engineering Sciences,1951,209:196−218.

    [21]

    XING Baolin,ZENG Huihui,HUANG Guangxu,et al. Porous graphene prepared from anthracite as high performance anode materials for lithium−ion battery applications[J]. Journal of Alloys and Compounds,2019,779:202−211. DOI: 10.1016/j.jallcom.2018.11.288

    [22]

    WILKS K R,MASTALERZ M,BUSTIN R M,et al. The role of shear strain in the graphitization of a high−volatile bituminous and an anthracitic coal[J]. International Journal of Coal Geology,1993,22:247−277. DOI: 10.1016/0166-5162(93)90029-A

    [23]

    RODRIGUES S,SUAREZ–RUIZ I,MARQUES M,et al. Catalytic role of mineral matter in structural transformation of anthracites during high temperature treatment[J]. International Journal of Coal Geology,2012,93:49−55. DOI: 10.1016/j.coal.2012.01.012

    [24]

    KWIECIŃSKA B,PETERSEN H I. Graphite,semi−graphite,natural coke,and natural char classification−ICCP system[J]. International Journal of Coal Geology,2004,57(2):99−116. DOI: 10.1016/j.coal.2003.09.003

    [25]

    OBERLIN A. Carbonization and graphitization[J]. Carbon,1984,22(6):521−541. DOI: 10.1016/0008-6223(84)90086-1

    [26]

    VIJAPUR S H,WANG Dan,INGRAM D C,et al. An investigation of growth mechanism of coal derived graphene films[J]. Materials Today Communications,2017,11:147−155. DOI: 10.1016/j.mtcomm.2017.04.003

    [27]

    LI Dan,KANER R B. Graphene−based materials[J]. Materials Science,2008,320(5880):1170−1171.

    [28] 曾会会. 煤基石墨烯及其复合材料的制备与电化学性能研究[D]. 焦作: 河南理工大学, 2018.

    ZENG Huihui. Preparation and electrochemical properties of coal−based graphene and its composites[D]. Jiaozuo: Henan Polytechnic University, 2018.

    [29]

    HUAN Xuan,TANG Yuegang,XU Jingjie,et al. Structural characterization of graphenic material prepared from anthracites of different characteristics:A comparative analysis[J]. Fuel Processing Technology,2019,183:8−18. DOI: 10.1016/j.fuproc.2018.08.017

    [30] 梁万林,魏文金,陈忠恕,等. 四川省赋煤构造单元划分及构造控煤作用分析[J]. 中国煤炭地质,2013,25(6):1−5. DOI: 10.3969/j.issn.1674-1803.2013.06.001

    LIANG Wanlin,WEI Wenjin,CHEN Zhongshu,et al. Coal hosting structural element partition and structural coal control analysis in Sichuan Province[J]. Coal Geology of China,2013,25(6):1−5. DOI: 10.3969/j.issn.1674-1803.2013.06.001

    [31] 李产林. 四川晚三叠世煤变质问题的研究[J]. 现代地质,1990,4(2):98−104.

    LI Chanlin. Research on coal metamorphism of the late Triassic in Sichuan[J]. Geoscience,1990,4(2):98−104.

  • 期刊类型引用(10)

    1. 王勃,徐凤银,金雪,王立龙,屈争辉,张文胜,李志,刘国伟,张艺腾,史鸣剑. 沁水盆地郑庄区块煤层气井产出水化学成分演变及其高产响应. 石油学报. 2024(11): 1638-1651 . 百度学术
    2. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 . 百度学术
    3. 简阔,傅雪海,夏大平,冯睿智,李咪,吉小峰. 我国次生生物成因煤层气研究进展. 煤矿安全. 2023(04): 11-21 . 百度学术
    4. 梁运培,李左媛,朱拴成,陈强,王鑫,秦朝中. 关闭/废弃煤矿甲烷排放研究现状及减排对策. 煤炭学报. 2023(04): 1645-1660 . 百度学术
    5. 华明国,田林,张燕,李佳,曹永恒. 潞安矿区煤层气井产出水地球化学特征及意义. 煤田地质与勘探. 2022(02): 65-71 . 本站查看
    6. 吴金刚,毛俊睿. 中国废弃煤矿瓦斯资源评价与抽采利用研究进展. 煤矿安全. 2021(07): 162-169 . 百度学术
    7. 刘建华,王生维,张晓飞. 顺煤层井煤屑录井法在废弃矿区二次开发中的应用研究. 煤炭技术. 2021(09): 11-14 . 百度学术
    8. 李忠城,吴建光,王建中,吴翔,卢国军. 沁水盆地南部15号煤层和顶板K_2灰岩水文地球化学演化特征. 煤田地质与勘探. 2020(03): 75-80 . 本站查看
    9. 马凯,马钱钱,史永涛. 远红外作用下不同含水率煤体吸附/解吸能量变化规律. 煤田地质与勘探. 2020(03): 86-92 . 本站查看
    10. 王相业,孙保平. 鄂尔多斯盆地兴县地区煤层气地球化学特征及成因. 煤田地质与勘探. 2020(04): 156-164+173 . 本站查看

    其他类型引用(9)

图(2)  /  表(5)
计量
  • 文章访问数:  339
  • HTML全文浏览量:  35
  • PDF下载量:  52
  • 被引次数: 19
出版历程
  • 收稿日期:  2021-02-19
  • 修回日期:  2021-10-13
  • 网络出版日期:  2022-01-27
  • 发布日期:  2022-01-31

目录

    /

    返回文章
    返回